
Research Article

Masanam Rekha, IJPRET, 2013

 Available Online At www.ijpret.com

 INTERNATIONAL JOURNAL OF PURE AND

APPLIED RESEARCH IN ENGINEERING AND

UART SERIAL COMMUNICATION MODULE BASED ON VHDL

1. Student at Amrita Sai Institute of Science & Technology, Vijayawada, India.

2. Asso. Professor & Head of The Department

Technology, Vijayawada, India.

3. Asst. Professor at RVR Institute

Accepted Date:

19/01/2012

Publish Date:

01/02/2012

Keywords

UART,

Asynchronous serial

communication,

VHDL,

Quartus II,

Simulation

Corresponding Author

Ms. Masanam. Rekha

IJPRET-QR CODE

Research Article

PRET, 2013; Volume 1(6): 52-60

Available Online At www.ijpret.com

INTERNATIONAL JOURNAL OF PURE AND

APPLIED RESEARCH IN ENGINEERING AND

TECHNOLOGY
A PATH FOR HORIZING YOUR INNOVATIVE WORK

UART SERIAL COMMUNICATION MODULE BASED ON VHDL

 MASANAM REKHA
1
, B. RAMA RAO

 2
,

KESHAMONI KUMAR
3
,

at Amrita Sai Institute of Science & Technology, Vijayawada, India.

& Head of The Department at Amrita Sai Institute of Science &

, Vijayawada, India.

at RVR Institute of Engineering & Technology, Andhrapradesh, India

Abstract

UART (Universal Asynchronous Receiver Transmitter) is a kind

of serial communication protocol; mostly used for short

distance, low speed, low-cost data exchange between

computer and peripherals. During the actual industrial

production, sometimes we do not need the full functionality of

UART, but simply integrate its core part. UART includes three

kernel modules which are the baud rate generator, receiver

and transmitter. The UART implemented with

can be integrated into the FPGA to achieve compact, stable

and reliable data transmission. It’s significant for the design of

SOC. The simulation results with Quartus II are completely

consistent with the UART protocol.

 ISSN: 2319-507X

 IJPRET

INTERNATIONAL JOURNAL OF PURE AND

APPLIED RESEARCH IN ENGINEERING AND

A PATH FOR HORIZING YOUR INNOVATIVE WORK

UART SERIAL COMMUNICATION MODULE BASED ON VHDL

at Amrita Sai Institute of Science & Technology, Vijayawada, India.

at Amrita Sai Institute of Science &

of Engineering & Technology, Andhrapradesh, India.

UART (Universal Asynchronous Receiver Transmitter) is a kind

of serial communication protocol; mostly used for short-

cost data exchange between

During the actual industrial

production, sometimes we do not need the full functionality of

UART, but simply integrate its core part. UART includes three

kernel modules which are the baud rate generator, receiver

and transmitter. The UART implemented with VHDL language

can be integrated into the FPGA to achieve compact, stable

and reliable data transmission. It’s significant for the design of

SOC. The simulation results with Quartus II are completely

PAPER-QR CODE

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

INTRODUCTION

Asynchronous serial communication has

advantages of less transmission line, high

reliability, and long transmission distance,

therefore is widely used in data exchange

between computer and peripherals.

Asynchronous serial communication is

usually implemented by Universal

Asynchronous Receiver Transmitter

(UART)
1
. UART allows full-duplex

communication in serial link, thus has been

widely used in the data communications

and control system. In actual applications,

usually only a few key features of UART are

needed. Specific interface chip will cause

waste of resources and increased cost.

Particularly in the field of electronic design,

SOC technology is recently becoming

increasingly mature. This situation results in

the requirement of realizing the whole

system function in a single or a very few

chips. Designers must integrate the similar

function module into FPGA. This paper uses

VHDL to implement the UART core

functions and integrate them into a FPGA

chip to achieve compact, stable and reliable

data transmission, which effectively solves

the above problem
2, 3

.

Basic UART communication needs only two

signal lines (RXD, TXD) to complete full-

duplex data communication. TXD is the

transmit side, the output of UART; RXD is

the receiver, the input of UART. UART’s

basic features are: There are two states in

the signal line, using logic 1 (high) and logic

0 (low) to distinguish respectively. For

example, when the transmitter is idle, the

data line is in the high logic state. Otherwise

when a word is given to the UART for

asynchronous transmissions, a bit called the

"Start Bit" is added to the beginning of each

word that is to be transmitted. The Start Bit

is used to alert the receiver that a word of

data is about to be sent, and to force the

clock in the receiver into synchronization

with the clock in the transmitter. These two

clocks must be accurate enough to not have

the frequency drift by more than 10%

during the transmission of the remaining

bits in the word
4
.

After the Start Bit, the individual data bits of

the word are sent, with the Least Significant

Bit (LSB) being sent first. Each bit in the

transmission is transmitted for exactly the

same amount of time as all of the other

bits, and the receiver “looks” at the wire at

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

approximately halfway through the period

assigned to each bit to determine if the bit

is a 1 or a 0. For example, if it takes two

seconds to send each bit, the receiver will

examine the signal to determine if it is a 1

or a 0 after one second has passed, then it

will wait two seconds and then examine the

value of the next bit, and so on. When the

entire data word has been sent, the

transmitter may add a Parity Bit that the

transmitter generates. The Parity Bit may

be used by the receiver to perform simple

error checking. Then at least one Stop Bit is

sent by the transmitter. When the receiver

has received all of the bits in the data word,

it may check for the Parity Bits (both sender

and receiver must agree on whether a

Parity Bit is to be used), and then the

receiver looks for a Stop Bit. If the Stop Bit

does not appear when it is supposed to, the

UART considers the entire word to be

garbled and will report a Framing Error to

the host processor when the data word is

read. The usual cause of a Framing Error is

that the sender and receiver clocks were

not running at the same speed, or that the

signal was interrupted.

Regardless of whether the data was

received correctly or not, the UART

automatically discards the Start, Parity and

Stop bits. If the sender and receiver are

configured identically, these bits are not

passed to the host.

If another word is ready for transmission,

the Start Bit for the new word can be sent

as soon as the Stop Bit for the previous

word has been sent. Because asynchronous

data are “self-synchronizing”, if there are

no data to transmit, the transmission line

can be idle. The UART frame format is

shown in Figure 1.

IMPLEMENTATION OF UART

In this paper, the top to bottom (Top to

Down) design method is used. The UART

serial communication module is divided into

three sub-modules: the baud rate

generator, receiver module and transmitter

module, shown in Figure 2. Therefore, the

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

implementation of the UART

communication module is actually the

realization of the three sub-modules. The

baud rate generator is used to produce a

local clock signal which is much higher than

the baud rate to control the UART receive

and transmit; The UART receiver module is

used to receive the serial signals at RXD,

and convert them into parallel data; The

UART transmit module converts the bytes

into serial bits according to the basic frame

format and transmits those bits through

TXD.

A. Baud Rate Generator

Baud Rate Generator is actually a frequency

divider. The baud rate frequency factor can

be calculated according to a given system

clock frequency (oscillator clock) and the

requested baud rate. The calculated baud

rate frequency factor is used as the divider

factor. In this design, the frequency clock

produced by the baud rate generator is not

the baud rate clock, but 16 times the baud

rate clock. The purpose is to precisely

sample the asynchronous serial data at the

receiver. Assume that the system clock is

32MHz, baud rate is 9600bps, and then the

output clock frequency of baud rate

generator should be 16 * 9600Hz. Therefore

the frequency coefficient (M) of the baud

rate generator is:

M =32MHz/16*9600Hz=208

When the UART receives serial data, it is

very critical to determine where to sample

the data information. The ideal time for

sampling is at the middle point of each

serial data bit. In this design, the receive

clock frequency is designed to be 16 times

the baud rate, therefore, each data width

received by UART is 16 times the receive

clock cycle.

B. Receiver Module

During the UART reception, the serial data

and the receiving clock are asynchronous,

so it is very important to correctly

determine the start bit of a frame data. The

receiver module receives data from RXD

pin. RXD jumps into logic 0 from logic 1 can

be regarded as the beginning of a data

frame. When the UART receiver module is

reset, it has been waiting the RXD level to

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

jump. The start bit is identified by detecting

RXD level changes from high to low. In

order to avoid the misjudgment of the start

bit caused by noise, a start bit error detect

function is added in this design, which

requires the received low level in RXD at

least over 50% of the baud rate to be able

to determine the start bit arrives. Since the

receive clock frequency is 16 times the baud

rate in the design, the RXD low level lasts at

least 8 receiving clock cycles is considered

start bit arrives. Once the start bit been

identified, from the next bit, begin to count

the rising edge of the baud clock, and

sample RXD when counting. Each sampled

value of the logic level is deposited in the

register rbuf [7, 0] by order. When the

count equals 8, all the data bits are surely

received, also the 8 serial bits are converted

into a byte parallel data.

The serial receiver module includes

receiving, serial and parallel transform, and

receive caching, etc. In this paper we use

finite state machine to design, shown in

Figure 3.

Figure 3. UART Receiver State Machine

The state machine includes five states:

R_START (waiting for the start bit),

R_CENTER (find midpoint), R_WAIT (waiting

for the sampling), R_SAMPLE (sampling),

and R_STOP (receiving stop bit). R_START

Status: When the UART receiver is reset,

the receiver state machine will be in this

state. In this state, the state machine has

been waiting for the RXD level to jump over

from logic 1 to logic 0, i.e. the start bit. This

alerts the beginning of a new data frame.

Once the start bit is identified, the state

machine will be transferred to R_CENTER

state. In Figure 3, RXD_SYNC is a

synchronization signal of RXD. Because

when sampling logic 1 or logic 0, we do not

want the detected signal to be unstable. So

we do not directly detect RXD signal, but

R_START
RXD_SYNC=0

R_STOP RXD_SYNC=1 R_CENTER

RCNT16=1110 AND
 RCNT16=0100

AND

RBITCNT=FRAMELEN

R_SAMPLE
RCNT16=1110 AND

R_WAIT

RBITCNT/ =FRAMELEN

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

detect the synchronization signal

RXD_SYNC. R_CENTER Status: For

asynchronous serial signal, in order to

detect the correct signal each time, and

minimize the total error in the later data

bits detection. Obviously, it is the most

ideal to detect at the middle of each bit. In

this state, the task is to find the midpoint of

each bit through the start bit. The method

is by counting the number of bclkr (the

receiving clock frequency generated by the

baud rate generator) (RCNT16 is the

counter of bclkr). In addition, the start bit

detected in the R_START may not be a

really start bit, it may be an occasional

interference sharp pulse (negative pulse).

This interference pulse cycle is very short.

Therefore, the signal that maintains logic 0

over 1 / 4 bit time must be a start bit.

R_WAIT Status: When the state machine is

in this state, waiting for counting bclkr to

15, then entering into R_SAMPLE to sample

the data bits at the 16th bclkr. At the same

time determining whether the collected

data bit length has reached the data frame

length (FRAMELEN). If reaches, it means the

stop bits arrives. The FRAMELEN is

modifiable in the design (using the Generic).

In this design it is 8, which corresponds to

the 8-bit data format of UART. R_SAMPLE

Status: Data bit sampling. After sampling

the state machine transfers to R_WAIT

state unconditionally, waits for the arrival

of the next start bit. R_STOP Status: Stop bit

is either 1 or 1.5, or 2. State machine

doesn’t detect RXD in R_STOP, but output

frame receiving done signal (REC_DONE <=

'1 '). After the stop bit, state machine turns

back to R_START state, waiting for the next

frame start bit.

C. Transmit Module

The function of transmit module is to

convert the sending 8-bit parallel data into

serial data, adds start bit at the head of the

data as well as the parity and stop bits at

the end of the data. When the UART

transmit module is reset by the reset signal,

the transmit module immediately enters

the ready state to send. In this state, the 8-

bit parallel data is read into the register

txdbuf [7: 0]. The transmitter only needs to

output 1 bit every 16 bclkt (the transmitting

clock frequency generated by the baud rate

generator) cycles. The order follows 1 start

bit, 8 data bits, 1 parity bit and 1 stop bit.

The parity bit is determined according to

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

the number of logic 1 in 8 data bits. Then

the parity bit is output. Finally, logic 1 is

output as the stop bit. Figure 4 shows the

transmit module state diagram.

This state machine has 5 states: X_IDLE

(free), X_START (start bit), X_WAIT (shift to

wait), X_SHIFT (shift), X_STOP (stop bit).

X_IDLE Status: When the UART is reset, the

state machine will be in this state. In this

state, the UART transmitter has been

waiting a data frame sending command

XMIT_CMD. XMIT_CMD_P is a processed

signal of XMIT_CMD, which is a short pulse

signal. Since XMIT_CMD is an external

signal, outside FPGA, its pulse width is

unable to be limited. If XMIT_CMD is valid,

it is still valid after sending one UART data

frame. Then the UART transmitter will think

by mistake that a new data transmit

command has arrived, and once again start

the frame transmit. Obviously the frame

transmit is wrong. Here we limit the pulse

width of XMIT_CMD. XMIT_CMD_P is its

processed signal. When XMIT_CMD_P = '1 ',

the state machine transferred to X_START,

get ready to send a start bit.

X_START Status: In this state, sends a logic 0

signal to the TXD for one bit time width, the

start bit. Then the state machine

transferred to X_WAIT state. XCNT16 is the

counter of bclkt. X_WAIT Status: Similar

with the R_WAIT of UART receive state

machine. X_SHIFT Status: In this state, the

state machine realizes the parallel to serial

conversion of outgoing data. Then

immediately return to X_WAIT state.

X_STOP Status: Stop bit transmit state.

When the data frame transmit is

completed, the state machine transferred

to this state, and sends 16 bclkt cycle logic 1

signal, that is, 1 stop bit. The state machine

turns back to X_IDLE state after sending the

stop bit, and waits for another data frame

transmit command.

III. SIMULATION OF MODULES

XCNT16=01111 AND

 XMIT_CMD_P=0
X_IDLE XMIT_CMD_P=1

X_STOP RXD_SYNC=1 X_START

XCNT16=01110 AND
XCNT16=01111

XBITCNT=FRAMELEN

X_SHIFT XCNT16=01110 AND
X_WAIT

XBITCNT/ =FRAMELEN

Figure 4. Transmit Module State Diagram

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

The simulation software is Quartus II. And

the selected device is Altera’s Cyclone II

FPGA: EP2C5F256C6.

A. Baud Rate Generator Simulation

During simulation, the system clock

frequency is set to 32MHz, and baud rate is

set to 9600bps. Therefore the receiving

sampling clock frequency generated by the

baud rate generator is 153600Hz, which is

16 times of the baud rate. Thus the

frequency coefficient of baud rate

generator can be calculated, which equals

208. Figure 5 shows the simulation result of

baud rate generator. The simulation report

shows that this module uses 42 logic

elements （<1% ）, 33 registers (2%), and

meets timing requirement.

Figure 5 Simulation Result of Baud Rate

Generator

B. Receiver Simulation

During receiver simulation, the receiving

sampling clock frequency generated by the

baud rate generator is set to 153600 Hz,

UART receiving baud rate is set to 9600bps.

The input sequence is: 00110110001,

including the start bit 0, parity bit 0 and 1

stop bit. The received data is stored into the

register rbuf. Figure 6 shows the receiver

module simulation diagram. The figure

shows that the data in rbuf from high to low

is 00110110, which is just the part of data

bits of UART frame.

Figure 6 Receiver Simulation Diagram

C. Transmitter Simulation

During transmitter simulation, the sending

clock frequency generated by the baud rate

generator is set to 153600 Hz, and UART

transmitting baud rate is set to 9600bps.

Figure 7 shows the transmitter module

simulation diagram. The simulation report

shows that this module uses 78 logic

Research Article ISSN: 2319-507X

Masanam Rekha, IJPRET, 2013; Volume 1(6): 52-60 IJPRET

 Available Online At www.ijpret.com

elements（<1%, 13 pins (4%), and meets

timing requirement.

Figure 7 Transmitter Simulation Diagram

D. RTL of Top File

Figure 8 shows the RTL of UART Top File. It

includes the baud rate generator, receiver,

and transmitter modules.

Figure 8 RTL of Top File

CONCLUSION

This design uses VHDL as design language to

achieve the modules of UART. Using

Quartus II software, Altera's Cyclone series

FPGA chip EP2C5F256C6 to complete

simulation and test. The results are stable

and reliable. The design has great flexibility,

high integration, with some reference

value. Especially in the field of electronic

design, where SOC technology has recently

become increasingly mature, this design

shows great significance.

REFERENCES

1. Zou, Jie Yang, Design and Realization of

UART Controller Based on FPGA.

2. Liakot Ali， Roslina Sidek， Ishak Aris，

Alauddin Mohd. Ali，Bambang Sunaryo

Suparjo: Design of a micro - UART for SoC

application [J].In: Computers and Electrical

Engineering 2004; 30: 257–268.

3. HU Hua, BAI Fenge. Design and

Simulation of UART Serial Communication

Module Based on Verilog -HDL [J]. J ISUANJ

I YU XIANDA IHUA 2008; 8.

4. Frank Durda Serial and UART Tutorial.

uhclem@FreeBSD.org.

