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INTRODUCTION 

Consider the model: 

ݕ =  ∑ ݔߚ + ାଵ,ݔ)݉

ୀ ) +  ߳           , ݅ = 1,2, … , ݊                             (1) 

where ݕଵ , … ,  response variables and the unobserved errors are ߳ଵݕ, … , ߳ are known to 
be i.i.d. normal with mean 0 and covariance ߪఢଶܫ with ߪఢଶ unknown. 

  The mean function of the regression model in (1) has two parts. The parametric ( first part 
) is assumed to be linear function of p-dimensional covariates ݔ and nonparametric 
(second part) ݉(ݔାଵ,) is function defined on some index set ܶ ⊂ ܴଵ. Inferences a bout 
model (1) such as its estimation as well as model checking are of interest.  

A Bayesian approach to (fully) semiparametric regression problems typically requires 
specifying prior distributions on function spaces which is rather difficult to handle. The 
extent of the complexity of this approach can be gauged from sources such as Angers and 
Delampady (see [1]), Ghosh and Ramamoorthi (see [8]) , and Lenk (see[9]), and so on. 
Furthermore, quantifying useful prior information of model (1) such as “g is close to (a 
specified function) g” ( we will define this function in section 4 )  is difficult 
probabilistically, whereas this seems quite straightforward if instead an appropriate metric 
on the concerned function space is used. This is where fuzzy sets or membership functions 
can be made use of.  

  In this paper, a simple Bayesian approach to semiparametric regression is described using 
fuzzy sets and membership functions. The membership functions are interpreted as 
likelihood functions for the model, so that with the help of a reference prior they can be 
transformed to prior density functions. By using penalized spline for the nonparametric 
function ( second part ) of the model (1) we can representation semiparametric regression 
model (1) as mixed model and Bayesian approach is employed to making inferences on the 
resulting mixed model coefficients, and we prove some theorems about posterior and 
Bayes factor. 

2. Fuzzy sets and membership functions 

A fuzzy subset A of a space G (or just a fuzzy set A) is defined by a membership function: 

                      ℎ : G → [0, 1]. 

The membership function, ℎ(g), is supposed to express the degree of compatibility of g 
with A.  For example, if G is the real line and A is the set of points “close to 0”, then 
ℎ(0) = 1 indicates that 0 is certainly included in A, but ℎ(0.07)  =  0.03 says that 0.07 is 
not really "close" to 0 in this context. Similarly, if G is a set of functions and ܣ ⊂  is a set ܩ 
of functions "close" to a given function g, then ℎ(g)  =  1 indicates that g is certainly 
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included in A; however, if ℎ(gଵ)  =  0.03 with gଵ(ݔ)  =  4g(ݔ)  +  24 then gଵ is not 
really “close” to g in this case (See [2,3,5,15,16]). Note that even when ܩ =  Θ is the 
parameter space, a membership function ℎ(θ) is not a probability density or mass 
function defined on Θ, and hence cannot be used to obtain a prior distribution directly. 
Angers and Delampady (see [3]) propose that a reasonable interpretation for a fuzzy subset 
A of Θ is that it is a likelihood function for ߠ given A. Another important question is how to 
define ℎ∩ from ℎ and ℎ for incorporating ℎ and ℎ in Bayesian inference. If A and B 
are independent, then interpreting ℎ and ℎ as likelihood functions leads to the result 
that ℎ∩ = ℎℎ , for this purpose. Further, the qualitative ordering that underlies a 
membership function can also be investigated with this interpretation, in conjunction with 
a prior distribution, (see [2,3,5,15,16]).  

3. Mixed Models 

The general form of a linear mixed model for the ith subject (i = 1,…, n) is given as follows 
(see [14,17]), 

ܻ =  ܺߚ + ∑ ܼݑ
ୀଵ +  ߳ , ൯ܩ,~ܰ൫0ݑ   ,    ߳~ܰ(0,ܴ)                       (2) 

where the vector ܻ  has length ݉, ܺ  and ܼ are, respectively, a ݉ ×  design matrix and 
a ݉ ×   design matrix of fixed and random effects. β is a p-vector of fixed effects and u୧୨ݍ
are the q୧-vectors of random effects. The variance matrix ܩ is a ݍ ×  matrix and ܴݍ  is a 
݉ × ݉ matrix. 

  We assume that the random effects { ݑ  ;  ݅ =  1, … , ݊ ;  ݆ =  1, … ,  and the set of error {ݎ
terms {߳ଵ, … , ߳} are independent. In matrix notation, 

ܻ = ߚܺ + ݑܼ + ߳                                                (3) 

here ܻ =  ( ଵܻ, … . , ܻ)்   has length ܰ = ∑ ݉

ୀଵ , ܺ = ( ଵܺ

் , … ,்ܺ)்  is a ܰ ×  design 
matrix of fixed effects, Z is a ܰ ×  ,block diagonal design matrix of random effects ݍ
q =  ∑ q୨୰

୨ୀଵ  , u = (uଵ, … , u୰) is a q-vector of random effects, ܴ =  ݀݅ܽ݃(ܴଵ, … ,ܴ) is a 
ܰ ×  ܰ matrix and ܩ = ,ଵܩ)݃ܽ݅݀  … × ݍ ) is aܩ,  .block diagonal matrix ݍ 

4. Semiparametric regression and spline 

The model (1) can be expressed as a smooth penalized spline with q degree, then it's 
become as(see [14]): 

ݕ =  ∑ ݔߚ + ∑ ାଵ,ݔାߚ


ୀଵ

ୀ + ∑ ାଵ,ݔ)ݑ} − ݇

ୀଵ )ା
 + ߳                         (4) 

where ݇ଵ, … , ݇ are inner knots ܽ <  ݇ଵ  < , , , <  ݇  <  ܾ. 
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  By using a convenient connection between penalized splines and mixed models. Model (4) 
is rewritten as follows(see [11,14]) 

                                                  ܻ = ߚܺ + ݑܼ + ߳                                                                     (5) 

where 

ܻ =  
ଵݕ
⋮
ݕ
൩  ,   ߚ =  

⎣
⎢
⎢
⎢
⎢
⎡
ߚ
⋮
ߚ
ାଵߚ
⋮

⎦ାߚ
⎥
⎥
⎥
⎥
⎤

ݑ  ,    =  
ଵݑ
⋮
ݑ
൩ , ܼ =  

ାଵ,ଵݔ) − ݇ଵ)ା
 ⋯ ାଵ,ଵݔ) − ݇)ା



⋮ ⋱ ⋮
ାଵ,ݔ) − ݇ଵ)ା

 ⋯ ାଵ,ݔ) − ݇)ା

 

ܺ =  

⎣
⎢
⎢
⎢
⎡1 ଵଵݔ … ଵݔ
1 ଵଶݔ … ଶݔ

ାଵ,ଵݔ … ାଵ,ଵݔ


ାଵ,ଶݔ … ାଵ,ଶݔ


⋮ ⋮ ⋱ ⋮
1 ଵݔ … ݔ

 ⋮ ⋱ ⋮
ାଵ,ݔ … ାଵ,ݔ


⎦
⎥
⎥
⎥
⎤
 

  We assume that the function g is: 

g = ߚܺ  +  (6)                                                                     ݑܼ

  And its prior guess g can be written as: 

 g =  (7)                                                                             ߚܺ

  Further, some of the a priori information penalized spline coefficients can be translated 
into: 

(߳)ܧ = (߳)ݎܽݒ             ;0 =  ܫఢଶߪ 

(ߚ)ܧ   = (ߚ)ݎܽݒ             ;0 =  (8)                                                 ܫఉଶߪ 

(ݑ)ܧ = (ݑ)ݎܽݒ              ;0 =  ܫ௨ଶߪ 

  The term ܺߚ in (5) is the pure polynomial component of the spline, and ܼݑ is the 
component with spline truncated functions with covariance ߪ௨ଶ ܳ, where ܳ =  ்ܼܼ. Letting 
 prior on u as (ܫ௨ଶߪ,0)ܰ be the parameter vector, the mixed model specifies a (ఢଶߪ,௨ଶߪ,ݑ,ߚ)
well as the likelihood, ݂(ߪ,ݑ,ߚ|ݕ௨ଶ,ߪఢଶ). To specify a complete Bayesian model, we also 
need a prior distribution on (ߪ,ߚ௨ଶ,ߪఢଶ). Assuming that little is known about β, it makes 
sense to put an improper uniform prior on β. Or, if a proper prior is desired, one could use 
a ܰ(0,ߪఉଶܫ) prior with ߪఉଶ so large that, for all intents and purposes, the normal distribution 
is uniform on the range of β. Therefore, we will use  ߨ(ߚ) ≡ 1. We will assume that the 
prior on σଶ is inverse gamma with parameters A and B – denoted IG(A, B) – so that its 
density is  
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(σଶ)ߨ  =  ಣ
ఽಣ

(ಣ)
(σଶ )ି(ಣାଵ) exp ቀ− ಣ

ಣమ
ቁ.                                            (9) 

  Also, we assume that: 

                                                σ୳ଶ~ IG(A୳, B୳). 

Here A, B, A୳and B୳ are “hyperparameters” that determine the priors and must be 
chosen by the statistician. These hyperparameters must be strictly positive in order for the 
priors to be proper. If A and B୳ were zero, then  π(σଶ) would be proportional to the 

improper prior ଵ
ಣమ

 , which is equivalent to log(σ) having an improper uniform prior. 

Therefore, choosing A and B both close to zero (say, both equal to 0.1) gives an 
essentially noninformative, but proper, prior. The same reasoning applies to A୳ and B୳. 
The model we have constructed is a hierarchical Bayes model, where the random variables 
are arranged in a hierarchy such that distributions at each level are determined by the 
random variables in the previous levels. At the bottom of the hierarchy are the known 
hyperparameters. At the next level are the fixed effects parameters and variance 
components whose distributions are determined by the hyperparameters. At the level 
above this are the random effects, u and ϵ, whose distributions are determined by the 
variance components. The top level contains the data, y. ( see [14] ) 

5. Prior information and Membership functions 

We have explained in the previous section that we would like to make use of imprecise 
prior information such as “g is close to g୭” by using a membership function (see [3,7,12]) 
which translates this into a measure of distance between the corresponding penalized 
spline coefficients. Let us examine the implications of assuming that the available prior 
information is quantified in terms of a membership function 

h(g)  =  ߮(݀(g, g୭)), 

where d is a measure of distance in ܮଶ. Due to the penalized spline decomposition 
assumed on g as well as g୭ (see section 4), a natural choice for d is the distance given by 

 ݀ଶ(g, g) = ‖g − g୭‖ଶ =  ‖Xβ + Zu− Xβ‖ଶ =  ‖Zu‖ଶ =  ∑ ଶݑ
 . 

  We will use a membership function that will depend only on ݀ଶ(g, g୭). Some possibilities 
for ℎ are the following: 

(i) The Gaussian membership function given by: 

 

ℎ(g) = ,ଶ(g݀ − )ݔ݁ g)) = )ݔ݁ − ∑ ߙ ଶݑ
  )                                         (10) 
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  This membership function can be explained as follows. Suppose we have available some 
past data of the form  

∗ݕ = ߚ∗ݔ  + ݑ∗ݖ + ߳    

where  

∗ݕ =  
∗ଵݕ
⋮
∗ݕ
∗
൩  ,   ߚ =  

⎣
⎢
⎢
⎢
⎢
⎡
ߚ
⋮
ߚ
ାଵߚ
⋮

⎦ାߚ
⎥
⎥
⎥
⎥
⎤

ݑ  ,    =  
ଵݑ
⋮
ݑ
൩ , ݖ∗ =  

ାଵ,ଵݔ)
∗ − ݇ଵ)ା

 ⋯ ାଵ,ଵݔ)
∗ − ݇)ା



⋮ ⋱ ⋮
∗ାଵ,ݔ)

∗ − ݇ଵ)ା
 ⋯ ∗ାଵ,ݔ)

∗ − ݇)ା

 

∗ݔ =  

⎣
⎢
⎢
⎢
⎡ 1 ∗ଵଵݔ … ∗ଵݔ

1 ∗ଵଶݔ … ∗ଶݔ
ାଵ,ଵݔ
∗ … ାଵ,ଵݔ

∗

ାଵ,ଶݔ
∗ … ାଵ,ଶݔ

∗

⋮ ⋮ ⋱ ⋮
1 ∗ଵݔ

∗ … ∗ݔ
∗

 ⋮ ⋱ ⋮
∗ାଵ,ݔ
∗ … ∗ାଵ,ݔ

∗
⎦
⎥
⎥
⎥
⎤
 

Suppose g = ߚܺ +  is estimated from this data by gො. Then the information in this data ݑܼ
may be quantified using a membership function of the type  

ℎ(g) = ,൫ − ݀ଶ(gݔ݁ gො)൯ = g‖−) ݔ݁ −  gො‖ଶ) = exp( − ฮܺߚ + ݑܼ − መߚܺ − ොฮݑܼ
ଶ

) =

exp( − ฮܺ൫ߚ − መ൯ߚ + ݑ)ܼ − ො)ฮݑ
ଶ

) = exp (−ߙ(∑ ൫ߚ − መ൯ߚ
ଶାାଵ

ୀ + ∑ ݑ) − ො)ଶ ݑ
 −   (( ߤ 

Where constant ߤ ≥ 0,  g୭ may then be identified with gො. If we have multiple past data 
sets, we may then have available ℎభ(g) = ,ଶ(g݀ − )ݔ݁ gොଵ)), ℎమ(g) = ,ଶ(g݀ − )ݔ݁ gොଶ)), 
and so on, which may be combined into   ℎ(g) =  ℎభ∩మ(g) =  ℎభ(g) ℎమ(g)             

                    = ,ଶ(g݀ − )ݔ݁ gොଵ)) ݁ݔ( − ݀ଶ(g, gොଶ))                                                          

                    = exp (−ฮܺߚ + ݑܼ − መଵߚܺ − ොଵฮݑܼ
ଶ

 −ฮܺߚ + ݑܼ − መଶߚܺ − ොଶฮݑܼ
ଶ

) 

                    = exp (−ฮܺ(ߚ − (መଵߚ + ݑ)ܼ − ොଵ)ฮݑ
ଶ

 −ฮܺ(ߚ − (መଶߚ + ݑ)ܼ − ොଶ)ฮݑ
ଶ

) 

                    = exp ൬−ߙଵ ቀ∑ ൫ߚ − መଵ൯ߚ
ଶାାଵ

ୀ + ∑ ݑ) −
 ොଵ)ଶݑ −   +ଵ ቁ൰ߤ 

                        exp ൬−ߙଶ ቀ∑ ൫ߚ − መଶ൯ߚ
ଶାାଵ

ୀ + ∑ ݑ) −
 ොଶ)ଶݑ −  , ଶቁ൰ߤ 

Where constants ߤଵ, ଶߤ ≥ 0, as an example one could consider fitting regression lines to 
two (or more) sets of past data with possibly different error variances and use the fitted 
regression lines along with the estimated variances for constructing the membership 
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functions. The constants ߙଵ and ߙଶ provide additional scope for assigning different weights 
to the two sources of information, which is another appealing feature of this approach. 

(ii) The multivariate t membership function 

 ℎ(g) = ( 1 +  ݀ଶ(g, g))ି(ା)/ଶ =  ( 1 +                                           ଶ    ………… (11)/(ା)ି(ݍ/ݑଵି்ܸݑ 

  Where ݍ >  2 is the degrees of freedom and ܭ denotes the dimension of ݑ. This is a 
continuous scale mixture of Gaussian membership functions with the same g୭ for each of 
the membership functions. Since this vanishes more slowly than Gaussian membership 
function, one could expect better robustness with this (see [2,3]). 

(iii) The uniform function 

ℎ(g) =  ൜1,      ݂݅ ݀(g, g୭) ≤  ߜ 
 (12) …………                            ݁ݏ݅ݓݎℎ݁ݐ                ,0

  This is an extreme case where g is restricted to a neighborhood of g୭( see [2,3] ). In order 
to proceed with Bayesian inference on g, we need to convert the membership function into 
a prior density. Thus we obtain the prior density 

(g)ߨ ∝  ℎ(g) ߨ(g), 

or, upon utilizing the spline decomposition for g, we have an equivalent prior density 

(ఢଶߪ, ܨ)ߨ  ∝  ℎ(ܨ) ߨ(ߪ,ܨఢଶ),                                      ……….(13) 

where ܨ = ,ߚ ]  .[ ݑ

5. Posterior calculations 

We have the model 

௨ଶߪ,ఢଶߪ,ܨ|ܻ ∼ ܫఢଶߪ,ܨܥ)ܰ  +  ௨ଶܳ).                                          (14)ߪ

where ܥ = [ܺ  ܼ]. 

  Unless ܨ has a normal prior distribution or a hierarchical prior with a conditionally normal 
prior distribution, analytical simplifications in the computation of posterior quantities are 
not expected.   For such cases, we have the joint posterior density of the penalized spline 
coefficients F and the error variances ߪఢଶ and ߪ௨ଶ given by the expression. 

(ܻ|௨ଶߪ,ఢଶߪ,ܨ)ߨ  ∝  (௨ଶߪ,ఢଶߪ,ܨ)ߨ ℎ(F) (௨ଶߪ,ఢଶߪ,ܨ|ܻ)݂ 

where ݂ is the likelihood. From (14), ݂ can be expressed as 

(௨ଶߪ,ఢଶߪ,ܨ|ܻ)݂ ∝ ܫఢଶߪ |  + ௨ଶܳ|ିଵߪ ଶ⁄ ଵି } ݔ݁
ଶ

 (ܻ − ்(ܨܥ ܫఢଶߪ)  + ܻ)௨ଶܳ)ିଵߪ −   {(ܨܥ
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  Proceeding further, suppose ߨ of the form 

(௨ଶߪ,ఢଶߪ,ܨ)ߨ =  (15)                                                   (௨ଶߪ,ఢଶߪ)ଵߨ 

which is constant in ܨ, is chosen. 

  Markov Chain Monte Carlo (MCMC) based approaches to posterior computations are now 
readily available. For example, Gibbs sampling is straightforward (see [ 3,14]).  

  Note that the conditional posterior densities are given by 

(௨ଶߪ,ఢଶߪ,ܻ|ܨ)ߨ ∝ exp ቄ ିଵ
ଶ

 (ܻ − ்(ܨܥ ܫఢଶߪ)  + ܻ)௨ଶܳ)ିଵߪ −                                    (ܨ)ቅ ℎ(ܨܥ

(16) 

(௨ଶߪ,ܨ,ܻ|ఢଶߪ)ߨ ∝ ܫఢଶߪ | + ௨ଶܳ|ିଵߪ ଶ⁄ exp ቄ ିଵ
ଶ

 (ܻ − ܫఢଶߪ) ்(ܨܥ + ܻ)௨ଶܳ)ିଵߪ −
 (17)                                                                                     (2ݑߪ,2߳ߪ)1ߨ    ܨܥ

(ఢଶߪ,ܨ,ܻ|௨ଶߪ)ߨ ∝ ܫఢଶߪ | + ௨ଶܳ|ିଵߪ ଶ⁄ exp ቄ ିଵ
ଶ

 (ܻ − ܫఢଶߪ) ்(ܨܥ + ܻ) ௨ଶܳ)ିଵߪ −
 (18)                                                                                    2ݑߪ,2߳ߪ1ߨ ܨܥ

  However, major simplifications are possible with the Gaussian ℎ as in (i) ( see section 4 ). 
Specifically, assuming that ℎ(ܨ) is proportional to the density of ܰ(ܨ  with ( ߁௨ଶߪ,

߁ =  
0ାାଵ 0

0 ି(ାାଵ)ܫ
൨ 

ܫఢଶߪ, ܨܥ )ܰ ~  ௨ଶߪ,ఢଶߪ,ܨ|ܻ +  ௨ଶܳ )                                                   (19)ߪ

ܨ)ܰ ~  ௨ଶߪ|ܨ                                               ( ߁௨ଶߪ,

  Therefore, it follows that 

Y|ߪఢଶ,ߪ௨ଶ ~ ܰ(ܨܥ ܫఢଶߪ, + ்ܥ߁௨ଶߪܥ  )                                               (20) 

where ߪܥ௨ଶ்ܥ߁ =  .௨ଶܳߪ 

ܨ)ܰ ~ ௨ଶߪ,ఢଶߪ,ܻ|ܨ + ܻ)ଵܣ −  ଶ)                                              (21)ܣ,(ܨܥ

where 

ଵܣ = ்ܥ ߁௨ଶߪ ܫఢଶߪ }  +  ଵ                                                (22)ି{்ܥ߁௨ଶߪܥ

ଶܣ = ߁௨ଶߪ − ்ܥ ߁௨ସߪ  ܫఢଶߪ }  +  (23)                               {߁ܥ}ଵି{்ܥ߁௨ଶߪܥ
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  Now proceeding as in [3], we employ spectral decomposition to obtain ்ܥ߁ܥ = ்ܤܦܤ  , 
where ܦ =  ݀݅ܽ݃(݀ଵ, . . . , ݀) is the matrix of eigenvalues and B is the orthogonal matrix of 
eigenvectors. Thus,  

ܫఢଶߪ + [்ܥ߁௨ଶߪܥ] = ܫఢଶߪ + ்ܤܦ௨ଶߪܤ = ்ܤܫఢଶߪܤ + ்ܤܦ௨ଶߪܤ = ఢଶߪܤ ቆܫ +
௨ଶߪ

ఢଶߪ
்ܤቇܦ  

                               = ܫ)ܤఢଶߪ +   ்ܤ(ܦߜ

where ߪ = ߜ௨ଶ/ߪఢଶ . Then, the first stage (conditional) marginal density of Y given ߪఢଶ and ߜ 
can be written as 

,ఢଶߪ|ܻ)݉ (ߜ =  ଵ

൫ଶగఙചమ൯

మൗ

 ଵ

ୢୣ୲[ூାఋ]భ మൗ
exp{ − ଵ

ଶఙചమ
 (ܻ − ܫ )ܤ்(ܨܥ + ܻ )்ܤ( ܦߜ −   (ܨܥ

=  ଵ

൫ଶగఙചమ൯

మൗ

 ଵ

[∏ [ଵାఋௗ]]
భ
మൗ

సభ
exp{ − ଵ

ଶఙചమ
(∑ ௦

మ

ଵାఋௗ

ୀଵ )}                                    (24) 

where ݏ = ,ଵݏ)  . . . , ்(ݏ = ܻ )்ܤ −  ,ఢଶߪ/௨ଶߪ = ߜ ,ఢଶߪ ). We choose the prior onܨܥ
qualitatively similar to the used in [3]. Specifically, we take ߨଵ(ߪఢଶ,ߜ)  to be proportional to 
the product of an inverse gamma density {ܤఢ

ച/߁(ܣఢ)} ݁ݔ(−ܤఢ/ߪఢଶ)(ߪఢଶ)ି(ചାଵ)  for ߪఢଶ 
and the density of a ܨ(ܾ,ܽ) distribution for ߜ (for suitable choice of ܣఢ  .( ఢ, b and aܤ,
Conditions apply on a and b such that (see[2,3]): 

1- The prior covariance of ߜ(= ଶమ(ାିଶ)
(ିସ)(ିଶ)మ

 )   is infinite. 

2- The fisher information number = ( మ(ାଶ)(ା)
ଶ(ିସ)(ାାଶ)

) is minimum. 

3- The prior mode = ((ିଶ)
(ାଶ)

) is greater than 0. 

This can be done by choosing 2 < ܾ ≤ 4 and ܽ = 8(ܾ + 2)/(ܾ − 2) 

 Once ߨଵ(ߪఢଶ,ߜ) is chosen as above, we obtain the posterior density of ߜ given ܻ, the 
posterior mean and covariance matrix of ܨ as in the following theorems. 

Theorem1: the posterior density of ߜ given ܻ is: 

(ܻ|ߜ)ଶଶߨ ∝  ఋ(್ మ⁄ )షభ

(ାఋ)ష(ೌశ್) మ⁄ (∏ (1 + )݀ߜ
ୀଵ )ିଵ ଶ⁄ ቀ2B + ∑ ௦

మ

ଵାఋௗ

ୀଵ ቁ

ି(୬ାଶಣାଶ) ଶ⁄
     (25) 

Proof: 

(ܻ|ߜ)ଶଶߨ = ,ఢଶߪ|ܻ)݉∫ ( ߜ ,ߜ)݂  ܾ,   ఢଶߪ݀(ఢܤ,ఢܣ,ఢଶߪ )݂ (ܽ
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= ∫ ଵ

൫ଶగఙചమ൯

మൗ

 ಣ
ఽಣ

(ಣ)
(σଶ )ି(ಣାଵ) exp ቀ− ಣ

ಣమ
ቁ (∏ (1 + )݀ߜ

ୀଵ )ିଵ ଶ⁄   

exp ቄ− ଵ
ଶఙചమ

ቀ∑ ௦
మ

ଵାఋௗ

ୀଵ ቁቅ  

್ మ⁄ ೌ మ⁄

(,)
 ఋ(್ మ⁄ )షభ

(ାఋ)ష(ೌశ್) మ⁄   ఢଶߪ݀ 

   

=  (ଶగ)ష మ⁄

(ಣ)
 

್ మ⁄ ೌ మ⁄

(,)
ఋ(್ మ⁄ )షభ

(ାఋ)ష(ೌశ್) మ⁄ ∫  (∏ (1 + )݀ߜ
ୀଵ )ିଵ ଶ⁄ exp ቄ− ଵ

ଶఙചమ
ቀ2B + ∑ ௦

మ

ଵାఋௗ

ୀଵ ቁቅ   

     (σଶ )ି(୬ାଶಣାଶ) ଶ⁄   ఢଶߪ݀

 

=  (ଶగ)ష మ⁄

(ಣ)
 

್ మ⁄ ೌ మ⁄

(,)
ఋ(್ మ⁄ )షభ

(ାఋ)ష(ೌశ್) మ⁄ (2)(୬ାଶಣାଶ) ଶ⁄ ∫   (∏ (1 + )݀ߜ
ୀଵ )ିଵ ଶ⁄ exp ቄ− ଵ

ଶఙചమ
ቀ2B +

  ݅݀ߜ+21݅ݏ1݊=݅

ቌ
ଶಣା∑

ೞ
మ

భశഃ

సభ

ଶఙചమ
ቍ

(୬ାଶಣାଶ) ଶ⁄

ቀ2B + ∑ ௦
మ

ଵାఋௗ

ୀଵ ቁ

ି(୬ାଶಣାଶ) ଶ⁄
  ఢଶߪ݀

 

∝  
)ߜ ଶ⁄ )ିଵ

(ܽ + (ା)ି(ߜܾ ଶ⁄  න  ൭ෑ(1 + (݀ߜ


ୀଵ

൱
ିଵ ଶ⁄

exp ൝−
1

ఢଶߪ2
൭2B + 

ଶݏ

1 + ݀ߜ



ୀଵ

൱ൡ   

    ቌ
ଶಣ ∑

ೞ
మ

భశഃ

సభ

ଶఙചమ
ቍ

[(୬ାଶಣାସ) ଶ⁄ ]ିଵ

ቀ2B + ∑ ௦
మ

ଵାఋௗ

ୀଵ ቁ

ି(୬ାଶಣାଶ) ଶ⁄
  ఢଶߪ݀

∝  ఋ
(್ మ⁄ )షభ((୬ାଶಣାସ) ଶ⁄ )

(ାఋ)ష(ೌశ್) మ⁄  (∏ (1 + )݀ߜ
ୀଵ )ିଵ ଶ⁄  ቀ2B + ∑ ௦

మ

ଵାఋௗ

ୀଵ ቁ

ି(୬ାଶಣାଶ) ଶ⁄
   

∝  ఋ(್ మ⁄ )షభ

(ାఋ)ష(ೌశ್) మ⁄  (∏ (1 + )݀ߜ
ୀଵ )ିଵ ଶ⁄   ቀ2B + ∑ ௦

మ

ଵାఋௗ

ୀଵ ቁ

ି(୬ାଶಣାଶ) ଶ⁄
  

Theorem2: The posterior mean and covariance matrix of ܨ are: 

(ܻ|ܨ)ܧ = ܨ + ܫ )}ܧܤ்ܥ߁  +  (26)                                                              ݏ{ܻ|ଵି( ܦߜ

and  

(ܻ|ܨ)ݎܽݒ = ଵ
ାଶചାଶ

ܧ  ቈቆ2ܤఢ + ቀ∑ ௦
మ

ଵାఋௗ

ୀଵ ቁቇ |ܻ Γ − ଵ

ାଶചାଶ
ܧܤ்ܥ߁ ቈቆ2ܤఢ +

 (27)                           ,[ܻ|ܶߜܴ(ߜ)ܴ]ܧ+߁ܥܶܤ ܻ|1−ܦߜ+݊ܫ ݅݀ߜ+21݅ݏ1݊=݅
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where ܴ(ߜ) = ܫ)ܤ்ܥ߁ +  ݏଵି(ܦߜ

Proof: 

  From (21): 

(ܻ|ܨ)ܧ = ܨ + ܻ)ଵܣ −  (ܨܥ

              = ܨ  + ܫఢଶߪ } {்ܥ߁௨ଶߪ} + ܻ)ଵି{்ܥ߁௨ଶߪܥ −  (ܨܥ

              = ܨ  + ்ܥ߁௨ଶߪ ܫ)ܤఢଶߪ }   + ܻ)ଵି{்ܤ(ܦߜ −  (ܨܥ

              = ܨ  + ఙೠమ

ఙചమ
ܫ)ଵି்ܤ்ܥ߁ + ܻ)ଵିܤ ଵି(ܦߜ −  (ܨܥ

Since B is the orthogonal matrix of eigenvectors, then ିܤଵ = ଵି்ܤ and்ܤ  =  .ܤ

  Therefore  

(ܻ|ܨ)ܧ = ܨ  + ܫ) ߜ ܤ்ܥ߁ + ܻ)்ܤଵି(ܦߜ −  ((ܨܥ

             = ܨ  + ܫ ))ܧ ܤ்ܥ߁ +  ,ݏ(ܻ|ଵି( ܦߜ

where the expectation ܫ ))ܧ +  see theorem ) (ܻ|ߜ)ଶଶߨ ଵ|ܻ) is taken with respect toି( ܦߜ
1 above ). And by same way can prove the variance of  ܨ given ܻ 

6. Model checking and Bayes factors 

An important and useful model checking problem in the present setup is checking the two 
models 

ܪ ∶  g = ߚܺ  = g versus ܪଵ ∶  g = ߚܺ + ݑܼ ≠  g. 

  Under Hଵ, ( g =  g(F),σ୳ଶ , σଶ)  is given the prior ℎ(ܨ)ߨ(ߪ,ܨ௨ଶ,ߪఢଶ)ܫ(g ≠ g), whereas 
under ܪ, ߨ(ߪఢଶ) induced by ߨ(ߪ,ܨ௨ଶ,ߪఢଶ) is the only part needed. In order to conduct the 
model checking, we compute the Bayes factor, ܤଵ, of  ܪ relative to ܪଵ: 

(ܻ)ଵܤ  =  (|ு)
(|ுభ)

                                                          (28) 

where ݉(ܻ|ܪ) is the predictive (marginal) density of ܻ under model ܪ , ݅ =  0, 1. We 
have 

(ܪ|ܻ)݉                                =  ∫ ݂(ܻ|g୭,ߪఢଶ)ߨ(ߪఢଶ) ݀ߪఢଶ 

and 

(ଵܪ|ܻ)݉ =  න݂(ܻ|ߪ,ܨ௨ଶ,ߪఢଶ)ℎ(ܨ)ߨ(ߪ,ܨ௨ଶ,ߪఢଶ) ݀ߪ݀ܨ௨ଶ݀ߪఢଶ 
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  As in the previous section ߨ(ߪ௨ଶ,ߪఢଶ) will be constant in F, while ߪఢଶ is inverse gamma and 
is independent of ݒଵ = ,ܨ ௨ଶ which is given theߪ/ఢଶߪ  prior distribution. (Equivalently, 

ߜ = ,ܨ ఢଶ is given theߪ/௨ଶߪ  , Specifically,  ߨ(σଶ) =  ಣ
ఽಣ

(ಣ)
(σଶ )ି(ಣାଵ) exp ቀ− ಣ

ಣమ
ቁ , where 

A and B (small) are suitably chosen. Therefore, 

(ܪ|ܻ)݉ =  න݂(ܻ|g  ఢଶߪ݀ (ఢଶߪ)ߨ(ఢଶߪ,

                = /ଶି(ߨ2) ಣ
ఽಣ

(ಣ)
/ଶି(ఢଶߪ)∫  exp ቀ− ಣ

ಣమ
ቁ (σଶ )ି(ಣାଵ) exp(−  (ି(௫))మ

ଶఙചమ
  ఢଶߪ݀(

                = /ଶି(ߨ2)  ಣ
ఽಣ

(ಣ)
 −)exp(/ଶାಣାଵ)ି(ఢଶߪ)∫ 

ಣା
భ
మ(௬ି(௫))మ

ఙചమ
 ఢଶߪ݀(

= /ଶି(ߨ2)  ಣ
ఽಣ

(ಣ)
ቀି(ఢଶߪ)∫ 


మାಣାଵቁ (B + ଵ

ଶ
ݕ) − g(ݔ))ଶ)


మାಣାଵ(B + ଵ

ଶ
ݕ) −

g2((݅ݔ))−(݊2+Aϵ+1)exp−Bϵ+12(݅ݕ−g(݅ݔ))2߳ߪ݀ 2߳ߪ2  

       = /ଶି(ߨ2)  ಣ
ఽಣ

(ಣ)
 ∫

(ಣା
భ
మ(௬ି(௫))మ)


మశఽಣశభ

(ఙചమ)ቀ

మశఽಣశభቁ

exp ቆ−
ಣା

భ
మ(௬ି(௫))మ

ఙചమ
ቇ (B + ଵ

ଶ
ݕ) −

g2((݅ݔ))−(݊2+Aϵ+1) ݀2߳ߪ 

= /ଶି(ߨ2)  ಣ
ఽಣ

(ಣ)
 ∫ቆ

ಣା
భ
మ(௬ି(௫))మ

ఙചమ
ቇ

(మାಣାଶ)ିଵ

exp ቆ−
ಣା

భ
మ(௬ି(௫))మ

ఙചమ
ቇ (B + ଵ

ଶ
ݕ) −

g2((݅ݔ))−(݊2+Aϵ+1) ݀2߳ߪ        

= /ଶି(ߨ2)  ಣ
ఽಣ

(ಣ)
 Γ(

ଶ
+ A + 1)(B + ଵ

ଶ
ݕ) − g(ݔ))ଶ)ି(మାಣାଵ) ݀ߪఢଶ                   (29) 

  Further, using (20) it follows that:  

m(Y|ܪଵ,ߪఢଶ, (ߜ = ି(ఢଶߪߨ2)

మ  (∏ (1 + )݀ߜ

ୀଵ )ିଵ ଶ⁄ exp ቄ− ଵ
ଶఙചమ

ቀ∑ ௦
మ

ଵାఋௗ

ୀଵ ቁቅ                (30) 

  Therefore, 

 m(Y|ܪଵ) =  ∫m(Y|ܯଵ,ߪఢଶ,ߜ)ߨ(ߪఢଶ,ߜ) ݀ߪఢଶ ݀ߜ 

=  න
B
ಣ

Γ(A)
(σଶ )ି(ಣାଵ) exp ൬−

B

σଶ
൰ /ଶି(ఢଶߪߨ2)  ൭ෑ(1 + (݀ߜ



ୀଵ

൱
ିଵ ଶ⁄

   

         exp ቄ− ଵ
ଶఙചమ

ቀ∑ ௦
మ

ଵାఋௗ

ୀଵ ቁቅߨ(ߜ) ݀ߪఢଶ ݀ߜ  
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=  ಣ
ఽಣ

(ಣ)
/ଶି(ߨ2) ∫   (∏ (1 + )݀ߜ

ୀଵ )ିଵ ଶ⁄      (ߜ)ߨ 

ቄ∫ exp ቄ− ଵ
ఙചమ
ቀB + ଵ

ଶ
∑ ௦

మ

ଵାఋௗ

ୀଵ ቁቅ ఢଶቅߪ݀    ߜ݀  

=  ಣ
ఽಣ

(ಣ)
ି(ߨ2) ଶ⁄ Γ(݊ 2⁄ + A)∫   (∏ (1 + )݀ߜ

ୀଵ )ିଵ ଶ⁄    

ቀB   (ߜ)ߨ + ଵ
ଶ
∑ ௦

మ

ଵାఋௗ

ୀଵ ቁ

ି( ଶ⁄ ାିଵ)
  (31)                                                         ߜ݀  

6.1. Prior robustness of Bayes factors 

Note that the most informative part of the prior density that we have used is contained in 
the membership function ℎ. Since a membership function ℎ(F)  is to be treated only as a 
likelihood for F, any constant multiple ܿℎ(F) also contributes the same prior information 
about F. Therefore, a study of the robustness of the Bayes factor that we obtained above 
with respect to a class of priors compatible with ℎ is of interest. Here we consider a 
sensitivity study using the density ratio class defined as follows. Since the prior π that we 
use has the form 

(ఢଶߪ,௨ଶߪ,ܨ)ߨ  ∝ ℎ(ܨ)ߨ(ߪ,ܨ௨ଶ,ߪఢଶ),  

we consider the class of priors 

ܥ  = ߨ } ∶ ܿଵℎ(F)ߨ(ߪ,ܨ௨ଶ,ߪఢଶ) ≤ (ఢଶߪ,௨ଶߪ,ܨ)ߨߙ ≤ ܿଶℎ(F)ߨ(ߪ,ܨ௨ଶ,ߪఢଶ),ߙ > 0} 

  For specified 0 <  ܿଵ  <  ܿଶ. We would like to investigate how the Bayes factor (28) 
behaves as the prior π varies in ܥ. We note that for any  ߨ ∈  ଵ hasܤ  , the Bayes factorܥ
the form 

ଵܤ =  
∫ ݂(ܻ|݃ ఢଶߪ݀ ௨ଶߪ݀ ܨ݀ (ఢଶߪ,௨ଶߪ,ܨ)ߨ (ఢଶߪ,

∫ ఢଶߪ݀ ௨ଶߪ݀ ܨ݀ (ఢଶߪ,௨ଶߪ,ܨ)ߨ (ఢଶߪ,௨ଶߪ,ܨ|ܻ)݂
 

  Even though the integration in the numerator above need not involve F, ߪ௨ଶ, we do so to 
apply the following result(see[1,2,3,6,8]).  

  Consider the density-ratio class  

ோ߁  = ߨ}  ∶ (ߟ)ܮ   ≤ (ߟ)ߨߙ   ≤ U(η) for some α >  0}  

 , for specified non-negative functions ܮ and ܷ. Further, let q ≡  qା  + qି be the usual 
decomposition of q into its positive and negative parts, i.e., qା(ݑ)  = ,(ݑ)q}ݔܽ݉  0} and 
qି(ݑ)  = ,(ݑ)q−}ݔܽ݉−  0}. Then we have the following theorem.  
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Theorem 3: For functions ݍଵ and ݍଶ such that ∫ݍ(ߟ)|ܷ(ߟ) ݀ߟ <  ∞, for i = 1, 2, and with 
qଶ positive a.s. with respect to all ߨ ∈ ோ߁ , 

inf
గ∈௰ವೃ

∫  η݀ (η)ߨ ଵ(η)ݍ
 η݀ (η)ߨ ଶ(η)ݍ∫

 

is the unique solutionߴ   of 

∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܷି((ߟ)ଶݍߴ +  ∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܮା((ߟ)ଶݍߴ = 0                     (32) 

sup
గ∈௰ವೃ

∫  η݀ (η)ߨ ଵ(η)ݍ
 η݀ (η)ߨ ଶ(η)ݍ∫

 

is the unique solution ߴ of 

∫( (ߟ)ଵݍ − ߟ݀(ߟ)ାܷ((ߟ)ଶݍߴ +  ∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܮି((ߟ)ଶݍߴ = 0                     (33) 

Proof: 

  To prove part one  

නݍଵ(η)ି ܷ(ߟ)݀ߟ  + නݍଵ(η)ା ߟ݀(ߟ)ܮ  − −  ߟ݀(ߟ)ܷ ିଶ(η)ݍනߴ    ߟ݀(ߟ)ܮ ଶ(η)ାݍනߴ 

= 0 

⟹න(ݍଵ(η)ି ܷ(ߟ) + −  ߟ݀((ߟ)ܮ ଵ(η)ାݍ (ߟ)ܷ ିଶ(η)ݍ)නߴ  + =  ߟ݀((ߟ)ܮ ଶ(η)ାݍ 0 

⟹ ߴ =
(ߟ)ܷ ିଵ(η)ݍ)∫ +   ߟ݀((ߟ)ܮ ଵ(η)ାݍ
(ߟ)ܷ ିଶ(η)ݍ)∫ +   ߟ݀((ߟ)ܮ ଶ(η)ାݍ

 

  By theorem 4.1. in DeRobertis and Hartigan (1981) ( see [6]), 

൫ݍଵ(ߟ)ି ܷ(ߟ) + ൯(ߟ)ܮ ା(ߟ)ଵݍ = ݅݊ గ݂∈௰ವೃ (ߟ)ଵݍܭ ܭ ݁ݎℎ݁ݓ, ∈  then ,(ܷ,ܮ)ܫ

⟹ ߴ =
∫ ݂݅݊
గ∈௰ವೃ

  ߟ݀(ߟ)ߨ (ߟ)ଵݍܭ

∫ ݂݅݊
గ∈௰ವೃ

  ߟ݀(ߟ)ߨ (ߟ)ଶݍܭ
 

⟹ ߴ = ݂݅݊
గ∈௰ವೃ

∫   ߟ݀(ߟ)ߨ (ߟ)ଵݍ
∫ (ߟ)ߨ (ߟ)ଶݍ   ߟ݀

 

  Then the inf∈ీ
∫ ୯భ() () ୢ 
∫ ୯మ() () ୢ 

 is the sol99oiuophpkiution ߴ, now to prove unique 

solution suppose 

ߴ  = inf
గ∈௰ವೃ

∫ భ() గ()ௗఎ  
∫ మ() గ()ௗఎ  

 , ܿଵ = inf
గ∈௰ವೃ

and  ܿଶ  ߟ݀(η)ߨ ଶ(η)ݍ∫ = sup
గ∈௰ವೃ

∫  .  ߟ݀(η)ߨ ଶ(η)ݍ

Then 0 <  ܿଵ  <  ܿଶ  < ∞ and |ߴ| < ∞ it follows that ߴ ≥ )∫ if and only if ߴ  (ߟ)ଵݍ −



Research Article                                                                                                           ISSN: 2319-507X                                                                                                     
Ammar Muslim Abdulhussein, IJPRET, 2013; Volume 2 (3): 1-18                             IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

15 

ߟ݀(ߟ)ܷି((ߟ)ଶݍߴ +  ∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܮା((ߟ)ଶݍߴ ≥ 0.Moreover, for any ߳ ≥ 0, 
ߴ + ߳/ܿଵ ≤ )∫   impliesߴ (ߟ)ଵݍ − ߟ݀(ߟ)ܷି((ߟ)ଶݍߴ +  ∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܮା((ߟ)ଶݍߴ ≥ ߳ 
which in turn implies ߴ + ߳/ܿଶ ≤ ߴ ; ; thusߴ >  if and only if ߴ 
∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܷି((ߟ)ଶݍߴ +  ∫( (ߟ)ଵݍ − ߟ݀(ߟ)ܮା((ߟ)ଶݍߴ > 0. Hence, then  ߴ is the 
unique solution.  

  Now to prove part two   

නݍଵ(η)ା ܷ(ߟ)݀ߟ  + නݍଵ(η)ି ߟ݀(ߟ)ܮ  − −  ߟ݀(ߟ)ܷ ଶ(η)ାݍනߴ    ߟ݀(ߟ)ܮ ିଶ(η)ݍනߴ 

= 0 

⟹න(ݍଵ(η)ା ܷ(ߟ) + −  ߟ݀((ߟ)ܮ ିଵ(η)ݍ (ߟ)ܷ ଶ(η)ାݍ)නߴ  + =  ߟ݀((ߟ)ܮ ିଶ(η)ݍ 0 

⟹ ߴ =
(ߟ)ܷ ଵ(η)ାݍ)∫ +   ߟ݀((ߟ)ܮ ିଵ(η)ݍ
(ߟ)ܷ ଶ(η)ାݍ)∫ +   ߟ݀((ߟ)ܮ ିଶ(η)ݍ

 

  Also by theorem 4.1. in DeRobertis and Hartigan (1981) ( see [6]), 

൫ݍଵ(η)ା ܷ(ߟ) + ൯(ߟ)ܮ ିଵ(η)ݍ = supగ∈௰ವೃ ܭ  ଵ(η) , whereݍܭ ∈  then ,(ܷ,ܮ)ܫ

⟹ ߴ =
∫ sup
గ∈௰ವೃ

  ߟ݀(η)ߨ ଵ(η)ݍܭ

∫ sup
గ∈௰ವೃ

  ߟ݀(η)ߨ ଶ(η)ݍܭ
 

⟹ ߴ = sup
గ∈௰ವೃ

∫   ߟ݀(η)ߨ ଵ(η)ݍ
∫   ߟ݀(η)ߨ ଶ(η)ݍ

 

  By same way of proof the unique of first part above ( the proof complete) . 

Now we shall discuss this result for the Gaussian membership function only. Then, since 
the prior π that we use has the form ߨ(ߪ,ܨ௨ଶ,ߪఢଶ) ∝ ℎ(ߠ) ߨ(ߪ௨ଶ,ߪఢଶ), and we don’t 
intend to vary ߨ(ߪ௨ଶ,ߪఢଶ) in our analysis, we redefine ܥ as 

ܥ  = (ܨ)ߨ } ∶  ܿଵℎ(F) ≤ (ܨ)ߨߙ   ≤  ܿଶℎ(F),         ߙ >  0 } 

  For specified 0 < ܿଵ < ܿଶ. Now, were express ܤଵ as 

ଵܤ =  
∫{∫ ݂(ܻ|g ܨ݀(ܨ)ߨ{ఢଶߪ݀(ఢଶߪ)ߨ (ఢଶߪ,

∫{∫ ܨ݀(ܨ)ߨ{ఢଶߪ௨ଶ݀ߪ݀(ఢଶߪ,௨ଶߪ)ߨ (ఢଶߪ,௨ଶߪ,ܨ|ܻ)݂
=  

∫  ܨ݀ (ܨ)ߨ (ܨ)ଵݍ
 ܨ݀ (ܨ)ߨ (ܨ)ଶݍ∫

 

where 

(ܨ)ଵݍ = න݂(ܻ|g  ఢଶߪ݀(ఢଶߪ)ߨ (ఢଶߪ,
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(ܨ)ଶݍ = න݂(ܻ|ߪ,ܨ௨ଶ,ߪఢଶ) ߨ(ߪ௨ଶ,ߪఢଶ)݀ߪ௨ଶ݀ߪఢଶ 

  Then by theorem 3 is readily applicable, and we obtain the following theorem: 

Theorem 4:  

infగ∈ಲ  ߴis the unique solution (ߨ)ଵܤ  of 

ܿଶ ∫( (ܨ)ଵݍ − ܨ݀(ܨ)ℎି((ܨ)ଶݍߴ + ܿଵ ∫( −(ܨ)ଵݍ ܨ݀(ܨ)ାℎ((ܨ)ଶݍߴ = 0              (34) 

 and  supగ∈ಲ ଵܤ  of ߴ is the unique solution (ߨ)

ܿଶ ∫( (ܨ)ଵݍ − ܨ݀(ܨ)ାℎ((ܨ)ଶݍߴ + ܿଵ ∫( −(ܨ)ଵݍ ܨ݀(ܨ)ℎି((ܨ)ଶݍߴ = 0              (35) 

Proof: 

          To prove the first part   

ܿଶනݍଵ(F)ି ܷ(ܨ)݀ܨ + ܿଵනݍଵ(F)ା ܨ݀(ܨ)ܮ − ܨ݀(ܨ)ܷ ିଶ(F)ݍଶනܿߴ

− ܨ݀(ܨ)ܮ ଶ(F)ାݍଵනܿߴ = 0 

⟹න(ܿଶݍଵ(ܨ)ି ܷ(ܨ) + ܿଵݍଵ(ܨ)ା ܨ݀((ܨ)ܮ  

− (ܨ)ܷ ି(ܨ)ଶݍන(ܿଶߴ  + ܿଵݍଶ(ܨ)ା ܨ݀((ܨ)ܮ  = 0 

⟹ ߴ =
∫(ܿଶݍଵ(F)ି ܷ(ܨ) + ܿଵݍଵ(F)ା ܨ݀((ܨ)ܮ 
∫(ܿଶݍଶ(F)ି ܷ(ܨ) + ܿଵݍଶ(F)ା ܨ݀((ܨ)ܮ

 

  Then,  

൫ܿଶݍଵ(F)ି ܷ(ܨ) + ܿଵݍଵ(F)ା (ܨ)ܮ൯ = infగ∈௰ವೃ ܭ ݁ݎℎ݁ݓ, ଵ(F)ݍܭܿ ∈ ,(ܷ,ܮ)ܫ ܿ ≤ ܿଵ + ܿଶ, 
then 

⟹ ߴ =
∫ inf
గ∈ಲ

  ܨ݀ଵ(F) ℎ(F)ݍܭܿ

∫ inf
గ∈ಲ

  ܨ݀ଶ(F) ℎ(F)ݍܭܿ
 

⟹ ߴ = inf
గ∈ಲ

∫   ܨ݀ଵ(F) ℎ(F)ݍ
  ܨ݀ଶ(F) ℎ(F)ݍ∫

 

⟹ ߴ = inf
గ∈ಲ

 (ߨ)ଵܤ

To prove the second part   
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ܿଶනݍଵ(F)ା ܷ(ܨ)݀ܨ  +  ܿଵනݍଵ(F)ି ܨ݀(ܨ)ܮ  −   ܨ݀(ܨ)ܷ ଶ(F)ାݍଶනܿߴ 

− =  ܨ݀(ܨ)ܮ ିଶ(F)ݍଵනܿߴ  0 

⟹න(ܿଶݍଵ(F)ା ܷ(ܨ) + ܿଵݍଵ(F)ି ܨ݀((ܨ)ܮ  − (ܨ)ܷ ଶ(F)ାݍන(ܿଶߴ  + ܿଵݍଶ(F)ି ܨ݀((ܨ)ܮ  

= 0 

⟹ ߴ =
∫(ܿଶݍଵ(F)ା ܷ(ܨ) + ܿଵݍଵ(F)ି ܨ݀((ܨ)ܮ 
∫(ܿଶݍଶ(F)ା ܷ(ܨ) + ܿଵݍଶ(F)ି ܨ݀((ܨ)ܮ

 

  Then,  

(ܿଶݍଵ(F)ା ܷ(ܨ) + ܿଵݍଵ(F)ି (ܨ)ܮ = supగ∈௰ವೃ ܭ ݁ݎℎ݁ݓ, ଵ(F)ݍܭܿ ∈ ,(ܷ,ܮ)ܫ ܿ ≤ ܿଵ + ܿଶ, 
then 

⟹ ߴ =
∫ sup
గ∈௰ವೃ

  ܨ݀ଵ(F) ℎ(F)ݍܭܿ

∫ sup
గ∈௰ವೃ

  ܨ݀ଶ(F) ℎ(F)ݍܭܿ
 

⟹ ߴ = sup
గ∈௰ವೃ

∫   ܨ݀ଵ(F) ℎ(F)ݍ
∫   ܨ݀ଶ(F) ℎ(F)ݍ

 

⟹ ߴ = sup
గ∈௰ವೃ

 (ߨ)ଵܤ

  By same as the unique prove to first part in theorem 3. 

7. CONCLUSIONS  

In this paper we suggest approach to semiparametric regression by proposing an 
alternative to dealing with complicated analyses on function spaces. The proposed 
technique uses fuzzy sets to quantify the available prior information on a function space by 
starting with a “prior guess”   baseline regression function g୭. First the penalized spline is 
used for the model and by using a convenient connection between penalized splines and 
mixed models, we can representation semiparametric regression model as mixed model. 
The penalized spline assumed on g and pure polynomial on prior g୭. Then prior of g relative 
to distance from g୭ specified in the form of a membership function which translates this 
distance into a measure of distance between the corresponding mixed model coefficients. 
Furthermore we obtain the posterior density of ߜ given ܻ, the posterior mean and  
covariance matrix of ܨ ( theorem 1, 2 ), and a Bayesian test is proposed to check whether 
the baseline function g୭ is compatible with the data or not and we proved the prior 
robustness of Bayes factors ( theorem 3, 4 ). 
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