
Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

154

 INTERNATIONAL JOURNAL OF PURE AND
APPLIED RESEARCH IN ENGINEERING AND

TECHNOLOGY
A PATH FOR HORIZING YOUR INNOVATIVE WORK

A REVIEW OF ACCELERATION OF XML PARSING THROUGH PREFETCHING

FARHANULLAH A KHAN1, PROF. S D DESHPANDE2
1. M.E., PRMCEAM, Bandera.

2. Dept. of PG Studies, PRMCAM, Bandera.

Accepted Date: 26/02/2015; Published Date: 01/03/2015

\

Abstract: Extensible Markup Language (XML) has turn out to be a extensively used standard for data

representation and exchange. However, its features also bring in significant overhead intimidating

the performance of recent applications. Here, we present a study of XML parsing and settle on that

memory-side data loading in the parsing step incurs a major performance overhead, as much as the

computation does. XML parsing is the process of reading an XML document and providing an

interface to the user application for accessing the document. In this paper we present a study on

XML parsing through different classic prefetching algorithms. Without a parser, your code cannot be

understood. Computers require instruction. An XML parser provides vital information to the program

on how to read the file. Parsers come in multiple formats and styles. This paper is an overview of the

various issue involved in XML parsing through different prefetching algorithms. Hence, we propose

memory-side acceleration which incorporates of data prefetching techniques, and can be applied on

top of computation-side acceleration to speed up the XML data parsing.

Keywords: XML Parsing, Acceleration

Corresponding Author: MR. FARHANULLAH A KHAN

Access Online On:

www.ijpret.com

How to Cite This Article:

Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161

PAPER-QR CODE

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

155

INTRODUCTION

EXTENSIBLE markup language (XML) is known for its language neutrality, application

independency and flexibility, and has thus been adopted as the standard in data exchange and

representation. Although XML is prevalent with its many benefits, due to its verbosity and

descriptive nature, it has also introduced a heavy performance overhead [1], [2]. Generally,

XML parsing is both memory and computation intensive. It consumes about 30 percent of

processing time in many Web service applications [4], and has become a major performance

bottleneck in database servers [5]. To improve the performance of XML processing, most

existing schemes have promoted acceleration from the computation side. Therefore, as

opposed to previous computation acceleration studies, we propose to accelerate XML parsing

from the memory side with the incorporation of data prefetching techniques. Unlike

computation-side acceleration, which has a strong dependency on the parsing model, memory-

side acceleration is generic and can be applied regardless of the underlying parsing model.

2. The XML Parsing Process

We present the review of some previous work in Table2.1 on the last page.

XML parsing is a process that scans through the input XML documents, breaks them into small

elements, and builds corresponding inner data representation. It is a pre-requisite for any

processing of an XML document because an XML document has to be parsed before any other

operations can be performed. However, XML parsing is also very expensive due to the high

overhead incurred by both computation and memory access.

Fig. 1. XML parsing process.

Usually, XML data parsing consists of three steps: character conversion, lexical analysis and

syntactic analysis, as shown in Figure 1[1].The first parsing step, character conversion: The first

parsing step involves converting a bit sequence from an XML

document to the character sets the host programming language understands. For example,

documents written in Western, Latin-style alphabets are usually created in UTF-8, while Java

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

156

usually reads characters in UTF-16. In most cases, a UTF-8 character can be converted to UTF-16

by simply padding 8-bit leading zeros. For example, the parser converts “<” “a” “>” from “3C 61

3E” to “003C 0061 003E” in hexadecimal representation.

Lexical analysis: The second parsing step involves partitioning the character stream into

subsequences called tokens. Major tokens include a start element, text, and an end element. A

token can itself consist of multiple tokens. Each token is defined by a regular expression in the

World Wide Web Consortium (W3C) XML specifications. For example, a start element consists

of a “<”, followed by an element name, zero or more attributes preceded by a space-like

character, and a “>”.partitions the character sets into subsequences called tokens, like start

element, text, and end element. Each token is defined by a regular expression in the World

Wide Web Consortium (W3C) XML specifications [8]. The third parsing step, syntactic analysis,

verifies the structure of tokens by checking that they have been properly nested. It is usually

implemented by pushdown automaton (PDA)[14]. After syntactic analysis, the PDA organizes

tokens into different data representations available for subsequent accesses or modifications

via various application programming interfaces (APIs) provided by different parsing models. The

first two steps stay the same among different parsing models. However, the third step,

syntactic analysis: exhibit variable behaviors when different parsing model is applied [6]. The

third parsing step involves verifying the tokens’ well-formed-ness, mainly by ensuring that they

have properly nested tags. The pushdown automaton (PDA) the following transition rules:

1. The PDA initially pushes a “$” symbol to the stack.

2. If it finds a start element, the PDA pushes it to the stack.

3. If it finds an end element, the PDA checks whether it is equal to the top of the stack.

 If yes, the PDA pops the element from the stack. If the top element is “$”, then the

document is “well-formed.” Done! Otherwise, the PDA continues to read the next element.

 If no, the document is not “well formed.” Done!

3. XML Parsing Modelling

Most XML parsers can be classified into two broad categories, based on the types of API that

they provide to the user applications for processing XML documents: event-driven parser and

tree-based parser [1]. On one hand, event-driven parser simply parses the document and

associates any tag it finds along the way with corresponding event, including the start and end

of the document, finding a text node, finding child elements, and hitting a malformed element.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

157

It transmits and parses XML info sets sequentially at runtime [12]. The parser itself does not

store any information of the XML document, so that the application can just access partial data

before parsing is completed. As a result, event-driven parser has an enviably small memory

footprint and low latency, making it suitable for streaming or forward only applications. Event-

driven model can be further divided into two classes: pull parser and push parser, according to

the parser- application interaction. Simple API for XML (SAX) [7, 1] adopts the push model,

which uses callback functions to report all the events from the parser to the application. In

contrast, Sax [18] adopts the pull model, in which clients pull XML data when it is needed so

that it can skip uninterested events. As shown in upper part of Figure

2, SAX parses the XML document and then pushes the XML information into application in

terms of SAX events. On the other hand, tree-based parser reads the entire content of an XML

document into memory and creates an in-memory tree structure to represents parent-child

sibling information. Only after parsing is complete, constructed trees can be navigated freely

and parsed arbitrarily for the duration of the document processing, which makes this parser

suitable for massive and frequent updates. This flexibility, however, comes at a great cost of

potentially large memory requirement and significant access delay, especially when large

document is processed. Document Object Model (DOM) [8] is the official W3C standard for

tree-based parser. As shown in bottom part of Figure 2, DOM parser processes XML data,

creates an object-oriented hierarchical representation of the document and offers the full

access to the XML data. In this study, we focus on the two most popular parsing models,

namely, SAX and DOM [19].

Figure 2: SAX and DOM Parsing Flow

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

158

4. Prefetching Techniques

Data prefetching has been proposed as a speculative technique to bridge the speed gap

between CPU and memory subsystem [8,1].It alleviates the performance degradation from the

long-latency memory accesses by predicting the memory access pattern of the application and

speculatively prefetching data that would be used in future computation. Considering that the

CPU memory performance gap is on the order of hundreds of processor clock cycles,

prefetching is an attractive way to remove the affect of long latency memory accesses.

5. Classic Prefetching

Algorithm

Prefetching techniques has been well studied and lots of algorithms have been proposed. We

list some classic prefetching algorithms below.

Sequential prefetching prefetchs the block or blocks that follow the current demanded block,

and is fit for the programs with the consecutive memory access pattern [1]. As an

improvement, Sequential tagged prefetching [1] issues a prefetch upon a cache miss as well as

when a prefetched block is referenced for the first time, thus it requires an extra bit per block

to mark the prefetch state. The Sequential prefetching family increases the performance on a

broad range of applications at a low cost, however, at the expense of many useless prefetches.

Stride prefetching makes prefetch requests according to the observed strides that separate

memory addresses flow. Conventional stride prefetching uses a record table indexed by the

program counter (PC) that associates strides to the loads following this kind of memory access

pattern [21]. If address a is referenced by a load that hits in the table, the matching entry

indicates that the load is following a stride pattern, then prefetcher issues their quest for

addresses a+s, where s is the associated stride. Strem Prefetching traces a sequence of nearby

misses when their addresses follow the same positive or negative direction in a small memory

region. In some design, there always exsites a streaming buffer to store the fetched data.

Correlating prefetching predicts future addresses from tables that record the past memory

program behavior .Usually, it generalizes the stride table by registering the stream of addresses

associated either to the load PC or to an address that misses in the corresponding cache level.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

159

6. Software Prefetching Vs. Hardware Prefetching.

According to how prefetching is implemented, it can be classified into two classes: software

prefetching and hardware prefetching.

 Software Prefetching

Software prefetching need to introduce new prefetching instructions into the instruction set

architecture (ISA), which could bring data at specified memory addresses into cache. It is

assisted by compiler algorithms to insert software prefetching instructions into proper places of

the source code. In the preprocessing stage, compiler gets the global information about

memory data access pattern, locates those data-sets that are lean towards cache misses and

calculates the positions to insert the prefetching instruction. In Intel® Pentium®

4 processor, it enables using the four prefetch instructions introduced with Streaming SIMD

Extensions (SSE). These instructions are hints to bring a cache line of data in to various cache

levels. Since software prefetching gets the assistance from compiler or programmer, it can

acquire a globule map of data accesses, handle irregular access patterns and make more

precise prefetching’s. However, the insertion of the prefetching instruction is statically

determined so software prefetching cannot adapt to the phase change of the application. Since

new instructions need to be added, recompilation is required, so these do not benefit the

scenarios where recompilation is inconvenient.

 Hardware Prefetching

Different from software prefetching that statically inserts prefetching instructions by compiler,

hardware prefetching frees the need to expand instruction set architecture and frees the

compiler from revising the source code of applications. It automatically determines the data

accesses that might cause cache misses and then make prefetching requests. Its decision is

based on the recorded history information so that it can adapt to the phase change of

application. However, it must consume extra hardware resource and is unable to gain a

complete picture of the whole memory pattern. Therefore, it does not suit for the case of

irregular data access and short arrays for the penalty of history start-up. In our study, we focus

on hardware prefetching for its advantage of no revise of the source code.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

160

7. Conclusion

Different from previous research work which focused on computation acceleration of XML

parsing, we studied the process of XML parsing and classic prefetching algorithms. We then

proposed to make acceleration for XML parsing.

8. Future Work

The next step of this research project is to integrate memory-side and computations-side

accelerators of XML parsing into a single core, and optimize its performance and power

consumption. Then, integrate this core onto many-core architectures to act as a Data Exchange

Frontend (DEF).

REFERENCES

1. Zhang W. and R. van Engelen,” High-Performance XML Parsing and Validation with

Permutation Phrase Grammer Parsers”, in International Conference on Web Service (ICWS’08)

IEEE, 2008.

2. Zacharia Fadika 1, Michael R. Head 2, Madhusudhan Govindaraju, “Parallel and Distributed

Approach for Processing Large-Scale XML Datasets”, 10th International Conference on Grid

Computing, IEEE/ACM, 2009.

3. Pan Y., W. Lu, Y. Zhang, and K. Chiu, “A Static Load-Balancing Scheme for Parallel XML Parsing

on Multi-core CPUs”, in 7th International Symposium on Cluster Computing and the Grid, IEEE

Brazil, May 2007.

4. Kai Ning, Luoming Meng, “Design and Implementation of the DTD-based XML Parser”, in

Proceedings of ICCT 2003.

5. B. Naga malleshwar Rao, N. Samba Siva Rao, V. Khanaa, “Exploiting XML Dom for Restricted

Access of Information”, in International Journal of Recent Trends in Engineering, Vol. 2, No. 4,

November 2009.

6. K. Chiu, T. Devadithya, W. Lu, and A. Slominski, K. Chiu, T. Devadithya, W. Lu, and A.

Slominski, “A Binary XML for Scientific Applications,” Proc. First Int’l Conf. e-Science and Grid

Computing, 2005.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Farhanullah A. Khan, IJPRET, 2015; Volume 3 (7): 154-161 IJPRET

Available Online at www.ijpret.com

161

7. D. Callahan, K. Kennedy, and A. Portereld, “Software Prefetching,” Proc. Fourth Int’l Conf.

Architectural Support for Programming Languages and Operating Systems, pp. 40-52, Apr.

1991.

8. A. J. Smith, “Sequential Program Prefetching in Memory Hierarchies”, IEEE Trans. Computers,

vol. C-11, no. 12, pp. 7-21, Dec. 1978.

9. J. Fu and J. Patel, “Stride Directed Prefetching in Scalar Processors”, Proc. 25th Ann. Int’l

Symp. Microarchitecture (MICRO 25), 1992.

10. N. Jouppi, “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-

Associative Cache and Prefetch Buffers”, Proc. Int’l Symp. Computer Architectures (ISCA), 1990.

11. S. Srinath and Y.N. Patt, “Feedback Directed Prefetching: Improving the Performance and

Bandwidth-Efficiency of Hardware Prefetchers”, Proc. Int’l Symp. High-Performance Computer

Architecture (HPCA), 2007.

12. S. Srinath and Y.N. Patt.

13. W.Y. Chen, S.A. Mahlke, P.P. Chang, and W.W. Hwu, “Data Access Microarchitectures for

Superscalar Processors with Compiler- Assisted Data Prefetching”, Proc. 24th Ann. Int’l Symp.

Microarchitecture (Micro computing 24), 1991.

14. A. Lai, C. Fide, and B. Falsafi.

