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Abstract: - Using the theoretical formalism of Li Wei et al (Phys. LettA 333 (2004)), we have studied 

the electromagnetic wave propagation in carbon nanotubes. We have studied the dispersion relation 

of TE-mode as a function of dimensionless parameter κa for fixed value of radius ‘a’ and different 

values of m. We have also studied the influence of nanotube radius on the dispersion relation for 

m=1.We observed that the obtained dispersion relation is very much identical to well-known 

electrostatic collective excitation. Our theoretically evaluated results are in good agreement with 

those of the other theoretical workers. 
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1. INTRODUCTION 

Following the discovery by Iijima1 of carbon nanotubes (CNs), there has been a growing interest 

in electromagnetic wave propagation in single-wall carbon nanotubes. Since CN can be metals 

or semiconductors depending upon its radius and the geometrical angle, some important 

information about the structural and electronic properties can be obtained using 

electromagnetic probe techniques2,3 or electron probe techniques4. In particular, being very 

long, a CN can be regarded as a nano waveguide to guide electromagnetic waves. During the 

past years, different theoretical models have been used to describe the physical properties of 

CNs. With a classical hydrodynamic model, Yanouleas5 and Jiang6 studied the collective 

excitation behavior of σ and π electrons in single or multi-wall CNs. The collective excitation 

properties of CNs are quite different from those of well-known graphite sheets. The difference 

is that the collective excitations in CNs have traditional one-dimensional (1D) characters for 

small wave number, while exhibiting two-dimensional (2D) behavior for large wave numbers. 

The quantum dielectric-response theory, taking into account the electron energy band 

structures in CNs have used7-9 to describe low frequency electronic excitations in CNs. Beyond 

the electrostatic excitations, Slepyan etal.10-13 studied electromagnetic processes in CNs. With 

the classical electrodynamics and a semi-classical kinetic theory, they derived the dispersion 

relation of surface wave in CN’s. They found out that the CNs can be used as a waveguide for 

controlling electromagnetic wave propagation in specified frequency ranges (examples are 

infrared and optical). They also presented a general quantum mechanical theory of the 

conductivity of a single wall carbon nanotubes with interband transitions.  

Now days, there is much interest to electromagnetic high-frequency properties of carbon 

nanotubes. This is because of their potential applications in nanoelectronics14, nanoantennas15-

18, polarizers19, free electron lasers20, devices for THz sensing and imaging21. As we know that 

carbon nanotubes (CNs) possess metallic properties therefore special interest has been paid 

due to their high conductivity at THz frequencies and compared to metal nanowires22. By this 

reason, their applications seem to be promising in THz and infrared ranges due to noticeable 

lower losses compared to other conductive materials. 

One of the most important electromagnetic property of metallic CNTs is a capability to support 

propagation of strongly delayed surface waves23,24. It is caused by a very high kinetic inductance 

of thin single –wall CNTs25. It makes electromagnetic (EM) wave propagation in CNTs strongly 

different compared to transmission lines, made of usual bulk metals. For description of 

electromagnetic properties of metallic CNTs, very often the model of impedance cylinder and 

effective boundary condition is used26. The model of impedance cylinder takes into account 
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quantum properties of CNTs via the complex surface frequency-dependent conductivity. This 

model was applied for theoretical study of CNT transmission lines and interconnects. These 

structures are composed of closely packed bundles of parallel identical metallic CNTs. It was 

applied for studying two-dimensional periodic arrays of single wall metallic CNTs. 

In this paper, using the theoretical formalism of Li Wei etal27, we have studied the dispersion 

relation of TE-mode of carbon nanotubes. We have evaluated dispersion relation (ω/Ωp) as a 

function of κa with fixed value of nanotube radius ‘a’ and different value of m. We have also 

studied the influence of the nanotube radius on the dispersion relation for m=1and different 

values of a. Our evaluated results are in good agreement with the other theoretical 

workers28,29.  

2. MATERIALS AND METHODS 

One models a single wall carbon nanotube as an infinitesimally thin and infinitely long 

cylindrical shell with a radius a. One assumes that the valence electrons can be considered as 

free electron gas distributed uniformly over the cylindrical surface. Let the density per unit area 

be n0. One uses cylindrical coordinate r=(ρ,φ,z). Consider an electromagnetic wave with 

frequency ω propagating along the nanotube z-axis. The homogeneous electron gas will be 

perturbed by the electromagnetic wave and can be regarded as a charged fluid with velocity 

field u(rS,t) and the perturbed density (per unit area) n1(rS,t). rS=(φ,z) is the coordinate of a 

point at the cylindrical surface of the nanotube. Velocity field u has only tangential components 

to the nanotube surface. Based on the linearized hydrodynamic model30, the electronic 

excitations on the cylindrical surface can be described to the continuity equation 

  

1
0

( , )
. ( , ) 0S

S

n r t
n u r t

t


 

  
                 (1) 

And the momentum –balance equation is given by 

  

2

1 1

0 0

( , )
( , ) ( , ) ( ( , ))s

S S S

e

u r t e
E r t n r t n r t

t m n n

  
   

      
        (2) 

Where z zE E e E e 

   
 is the tangential component of the electromagnetic field. 1n

is the 

charge density polarization of the electron gas, e is the electronic charge and me is the electron 

mass. Here 

1

ze e
z




   
  

   only differentiates tangentially to the nanotube surface. 
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The first term on the right hand side of equation (2) is the force on electrons on the nanotube 

due to the tangential component of the electric field, the second and third terms may be 

regarded as parts of the internal interaction force in the electron gas. Here α=(VF
2/2) is the 

speed of propagation of density disturbances in the electron gas with VF=

1

2 2
0(2 )n a v 

being 

the Fermi velocity of the 2D electron gas and 
2( ) / 4a v  

 describes single electron 

excitations in the electron gas. Here 
a and 

v are the Bohr radius and Bohr velocity 

respectively. We have neglected the second and third terms in the calculation as it was 

neglected in the works of Yannouleas etal5. 

The electric field vector E(r,t) and the magnetic field vector B(r,t) can be expanded  in the 

following Fourier forms 

 E(r,φ,z,t)= 

( )( , ) i m qz t

m

m

dqE r q e  


  

 

 
                  (3) 

 B(r,φ,z,t) 

( )( , ) i m qz t

m

m

dqB r q e  


  

 

  
                  (4) 

Using Maxwell’s equations, one can obtain the following Helmholtz equations for the z-

components Ezm and Bzm of the expanding coefficients Ezm and Bzm 

  

2 2
2

2 2

1
( ) 0zm zm

zm

d E dE m
E

dr r dr r
   

               (5) 

And  

2 2
2

2 2

1
( ) 0zm zm

zm

d B dB m
B

dr r dr r
   

             (6) 

Where    
2 2 2q k   ,     

k
c




               7(a) 

k is wave number and c is velocity of light. We have assumed that the propagation of 

electromagnetic waves are in the infrared regime so that k q .  

By eliminating the velocity field u(r,t), one can obtain the following equations from equation(1) 

and (2) 
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Upon solving equation (8) by means of space-time Fourier transforms for the induced density 

n1(rS,t) on the cylindrical surface, one finds  

  

( )

1( , , ) ( ) i m qz t

m

m

n z t dqN q e  


  
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  
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Where        

0 1
.m m m

e m

en
N i q E

m W

  

           9(b) 

With       
( )m z

m
q qe e

a


   
             9(c) 

  
2 2 4

m m mW q q             9(d) 

To solve equations (5) and (6), one has to provide appropriate boundary conditions. With the 

induced density, these boundary conditions can be written as 

   

0

0

( ) ( )rm r a rm r a

en
E a E a


   

     10(a) 

   
( ) ( ) 0m r a m r aE E 

  
          10(b) 

And  
( ) ( ) 0rm r a rm r aB a B a  

             10(c) 

Where ε0 is the permittivity of free space. Equation 10(a)  indicates that due to the polarization 

of the electron gas on the nanotube surface, the radial component of the electric field is 

discontinuous  at the cylinder at r=a. With the above equation, one will consider propagation of 

the electromagnetic wave with TE mode 

DISPERSION RELATION OF TE-MODE 

For the TE mode, the longitudinal electric field is zero. i.e EZ =0. From equation (6), the 

longitudinal component of the magnetic field can be expressed by 

   
( ) ( ), ( )zm m mB r C I r r a 

          11(a) 
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And                          
( ) ( ), ( )zm m mB r D K r r a 

          11(b) 

Where Im(x) and Km(x) are the modified Bessel function and coefficients Cm and Dm will be 

determined by the boundary conditions. With Maxwell’s equations 

    x E=- t



 B             12(a) 

    x B=c-2 t



 E           12(b) 

The radial component rmE
and azimuthal component mE  of the electric field and the radial 

component rmB
 of the magnetic field can be expressed as follows 

   
2

( ) ( )rm zm

m
E r B r

r






              (13) 

   
2

( )
( ) zm

m

dB r
E r i

r dr







         (14) 

And      

( )
( ) zm

zm

dB rq
B r i

dr
 

           (15) 

Equation 9(b) and (14), the Fourier coefficient Nm of the induced density is reduced to 

   

'0 01 1
( )

m

m zm

e m e m

mEen en mq
N i B a

m W a m W a




   

          (16) 

Substituting equations (13)-(17) into boundary conditions [equations 10(a),10(b) and 10(c)] one 

obtains the following dispersion relation between the frequency  and wave number   

   

2 2 2 2
2 2 2 2

2 2 2 2
( ) ( )

m m

c a c a

 
         

 

   
2 2 ' '( ) ( ) ( )p m ma I a K a   

         (17) 
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Where   

12

0 2

0

( )p

e

e n

m a
 

               (18) 

' ( )mI x
 and 

' ( )mK x  are the derivatives of the Bessel functions with respect to argument  x a

. Here, the Wronskian property, 
' ( )mI x

Km(x)=- Im(x) 
' ( )mK x =1/x , has been used. In order to 

simplify the notation, one introduce dimensionless variable p

y





 and x a   then equation 

(17) can be reduced in the following form 

  
2 2 2 2 2 2 2 2

1 1( ) ( )y x y m x y m          

   
2 ' 'I ( ) ( )m mx x K x 

                    (19) 

  
1 2( )pa


 


           20(a) 

  
1 2 4( )pa


 


       20(b) 

  

2 4

2

pa

c





        20(c) 

It can be seen from equation (19) that the dispersion relation depends on the tube’s radius ‘a’ 

and the surface electron density n0. Generally, radiuses of the single wall carbon nanotubes 

range from 1nm up to almost 15nm.  Assuming the atomic density of graphite sheet 38nm-2, 

the surface electron density of a single-wall carbon nanotube can be approximated by 

n0=4x38nm-2 and the value of parameter σ=5.5x10-3=0.05. Therefore, one can neglect the term 

σy2 in equation (19) for low frequency electromagnetic wave. The dispersion relation looks like 

  
2 2 2 2 2 2 ' '

1 1( ) ( ) ( ) ( )m my x m x m xI x K x           (21) 

From equation (19), one can distinguish two different dimensionality regimes depending on 

two cases of 
x m

 or 
x m

 

One may use the asymptotic expressions of the Bessel functions 
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( )

2

x

m

e
I x

x


                    22(a) 

    
( )

2

x

mK x e
x

 
                22(b) 

The dispersion relation can be written approximately as 

  
2 4 2

1 1 2
xy x x   

                   (23) 

In fact, for large radius nanotubes, the parameters 1  and 1  approaches zero and the 

dispersion relation becomes 

    

2

2

x
y 

            (24) 

In this case      

2
2 2 0

0

1

2 2
p

e

e n
x k

m



  

      (25) 

which is independent on the dimension of the tube and corresponds to the dispersion relation 

in a planer 2D electron gas with the surface density n0. 

On the other hand for 
x m

, one use the well-known expressions of Bessel functions 

( ) m

m mI x a x , 
0

1.123
( ) ln( )K x

x


, and ( ) ( 0)m

m mK x b x m  where 

2

( 1)

m

ma
m




   and 

12 ( )m

mb m 
. Then for 0m , one gets 

  

2 2 4 2

1 1[ ]
2

p

m
m m     

               (26) 

And for 0m    ,  one has 

   
2 0                     (27) 

Now, it is clear that the dispersion relations given by equation (26) depend strongly on the 

radius of the nanotube, which has a traditional 1D character. 
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3. RESULTS AND DISCUSSION: 

In this paper, we have presented a method of evaluation of dispersion relation ( p




) for TE-

mode as a function of variable κa. The evaluation has been performed using the theoretical 

formalism of Li Wei etal27. In Table T1, we have evaluated dispersion relation ( p




) for TE-

mode as a function of dimensionless variable κa for nanotube radius a=5nm with different 

values of m. From our evaluated results it appears that the dispersion relation ω for the 

nanotube continue to increase with increasing value of κa for all values of m>0. It approaches 

the Plasmon frequency of the 2D electron gas, 2
p

a


for a  . This result is quite similar 

with the well-known dispersion relation of the electrostatic collective excitation7. We have also 

evaluated the influence of the nanotube radius on the dispersion relation for m=1 and different 

values of a. We have taken the values of a=2, 5, 10 and 15nm for m=1 as a function of κa. The 

results are shown in table T2. From our evaluated results, it can be seen that dispersion curve 

approaches to one for large nanotube radius. It increases with κa for all values of a. Its value is 

large at a=2nm and small for a=15nm at value of κa=60. In addition, we have also examined the 

effect of the internal interaction forces on the electron gas on the dispersion relation for TE-

mode. The evaluated results are shown in table T3. Here, we have evaluated dimensionless 

frequency 

( )
p




 in three cases. In one case (a) we have taken 1 1 0  

. In other case (b) 

1 0, 
and 1 0 

. In third case (c) we fixed 1 0, 
and 1 0 

. The evaluation is done using 

equation (27). From our evaluation, it is clear that for TE-mode the internal pressure force of 

the electron makes the increase of the frequency, while the dispersion relation is almost 

affected by the single electron excitation effects. There is some recent calculations31-45 on 

electromagnetic wave propagation in carbon nanotubes which also reveal the similar behavior. 

4. CONCLUSION 

From the above theoretical analysis and investigations, we have come across the following 

conclusions. 

 One has used the linearized hydrodynamic model with Maxwell equations to describe the 

propagation of the electromagnetic wave in the single wall carbon nanotubes 
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 General expressions have been derived for the dispersion relation of the low-frequency 

electromagnetic wave for TE-mode. 

 The obtained dispersion relation for TE-mode is very much identical to well –known 

electrostatic collective excitation. This excitation has a dimensionality crossover from 1D 

system to 2D system. 

 The hydro dynamical model is considered to be more reliable in describing the single-

electron excitation. This particular excitation has important contribution in TE-mode 

dispersion. 

 This model does not consider the electron energy-band effects. This effect is very much 

important in describing the dispersion relation for chiral nanotube. 

Table T1: An evaluated result of the dispersion relation 

( )
p




 of TE-mode for carbon 

nanotube with radius a=5nm and m=0, 1, 2, 3 and 4 as a function of κa. 

   κa 

                                     <-------

( )
p




-------------------------------------- 

m=0 m=1 m=2 m=3 m=4 

 O 0.0 0.75 1.06 1.11 1.35 

2 0.25 0.96 1.24 1.30 1.46 

4 0.69 1.17 1.38 1.42 1.52 

5 1.26 1.34 1.42 1.50 1.68 

6 1.34 1.47 1.67 1.72 1.79 

8 1.46 1.58 1.74 1.86 1.92 

10 1.67 1.77 1.84 1.94 2.08 

12 1.85 1.95 1.98 2.07 2.15 

14 1.92 2.06 2.10 2.18 2.36 

15 2.00 2.15 2.22 2.30 2.48 
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16 2.28 2.37 2.40 2.45 2.58 

18 2.45 2.50 2.55 2.62 2.76 

20 2.88 2.90 2.95 3.00 3.10 

 

TableT2: An evaluated result of the dispersion relation 

( )
p




 of TE-mode for carbon 

nanotube with radius a=2, 5, 10 and 15nm for m= 1 as a function of κa. 

 κa 

                                      

( )
p




 (m=1) 

 a=2nm a =5nm a =10nm a=15nm 

0 0.86 0.92 0.95 1.00 

5 1.24 1.25 1.28 1.20 

10 1.86 1.94 2.05 1.87 

15 2.17 2.15 2.28 2.10 

20 2.48 2.27 2.39 2.29 

25 3.25 2.48 2.60 2.50 

30 3.98 2.95 3.00 2.88 

35 4.18 3.10 3.17 3.05 

40 4.87 3.29 3.30 3.10 

45 5.18 3.86 3.52 3.47 

50 5.75 4.08 3.68 3.59 

60 5.98 4.50 3.87 3.80 
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TableT3: An evaluated result of the dispersion relation 

( )
p




 of TE-mode for a=5nm and m=0 

using relation (11) for (a) 1 1 0  
 (b) 1 10, 0  

 (c) 1 1 0  
 as a function of κa. 

  κa 

                         

( )
p




( a=5nm and m=0) 

(a) 1 1 0  
 (b) 1 10, 0  

 (c) 1 1 0  
 

0 0.0 0.0 0.0 

5 1.25 1.16 1.14 

10 1.47 1.40 1.38 

15 1.89 1.75 1.72 

20 2.30 2.20 2.16 

25 2.97 2.88 2.78 

30 3.38 3.25 3.15 

35 3.68 3.55 3.42 

40 4.15 4.10 3.88 

45 4.88 4.67 4.12 

50 5.27 5.10 4.68 

55 5.78 5.52 4.89 

60 6.16 5.97 5.12 

 

5. REFERENCES: 

 

1. S Iijima, Nature  454, 56 (1991) 



Research Article          CODEN: IJPAKY             Impact Factor: 4.226          ISSN: 2319-507X                                                                                                     
Rakesh Kumar, IJPRET, 2016; Volume 4 (7): 92-106                                                       IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

104 

2. A. Bezryadin, A. R. M. Verchueren, S. J. Tans, C Drkker, Phys. Rev. Lett.(PRL) 80, 4036 (1998) 

3. L. Langer etal. Phys. Rev. Lett.(PRL) 76, 479(1996) 

4. M. Knupfer etal. Carbon  37, 733(1999) 

5. C Yannouless, E. N. Bogachek, U. Landman, Phys. Rev. B53, 10225(1996) 

6. X. Jiang, Phys. Rev. B54, 13487(1996) 

7. M F Lin and  K W K Shung, Phys. Rev. B47, 6617(1993) 

8. M. F. Lin, D S Chun, C. S Huang, Y K Lin and K W K Shung, Phys. Rev. B53, 15493(1996) 

9. M F Lin and F. L. Shyu, Physica  B292, 117(2000) 

10. G. Ya Slepyan, S. A. Maksimenko, A. Lakhtakia, O M Yevtushenko and A. V. Gusakov, Phys. 

Rev. B57, 9485(1998) 

11. G. Ya Slepyan, S A Maksimenko, A Lakhtakia, O M Yevtushenko and A. V. Gusakov, Phys. 

Rev.  B60, 17136(1999) 

12. S A Maksimenko and  G. Ya Slepyan, “ Nanoelectromagnetics of low dimensional structures, 

Vol PM129, SPIE Press, 2004 

13. S A Maksimenko and  G. Ya Slepyan,  Electromagnetics of Carbon nanotubes, Vol  PM123, 

SPIE Press, 2003 

14. A Maffucci, G. Miano, F. Villone, Int. J. Circuit Theory and Applications  36, 31(2008) 

15. G V Hanson, IEEE Trans. On Antennas and propagation  53, 3426 (2005) 

16. Y Yang, K Kempa, B. Kimball, J. B. Carlson and Z F Ren, Appl. Phys. Lett.  85, 2607(2004) 

17. S A Makimenko, G. Y. Slepyan, A. M. Nemillinstan and M V. Shuba, Physica  E40, 2360(2008) 

18.  P. A. Belov, R. Marques, S. I. Maslovski, I. S. Nefedov and S. A. Tretyakov, Phys. Rev.  B67, 

113103(2003) 

19. L. Ren, C. L. Pint, L. G. Booshehri, W. D. Rice, X. Wang, D.J. Hilton, K. Takeya and J. Kono, 

Nono Lett.  9, 2610(2009) 



Research Article          CODEN: IJPAKY             Impact Factor: 4.226          ISSN: 2319-507X                                                                                                     
Rakesh Kumar, IJPRET, 2016; Volume 4 (7): 92-106                                                       IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

105 

20. K. G. Batrakov, S. A. Maksimenko, P. P. Kuzhir and  C. Thomsen, Phys. Rev. B79, 

125408(2009) 

21. K. Fu, R. Zannoni, C. Chan, S. H. Adams, J. Nicholson and K. S. Yngvesson, Appl. Phys. Lett. 

92, 033505(2008) 

22. P. J. Burke, IEEE on Technology  3, 129(2002) 

23. R. A. Silin, “Periodic Waveguides (Phasis Moscow, 2002) in Russian 

24. I. V. Lindell, S. A. Tretyakov, K. V. Nikoskinen and S. Ilvomin, Micr. and Opt. Techn. Lett.  

31,129(2001) 

25. D. R. Smith and D. Schnrig, Phys. Rev. Lett.(PRL) 90, 077405(2003) 

26. P. J. Burke, S. Li and Z. Yu, IEEE on Nanotechnology  5, 314(2006) 

27. Li Wei and You-Nian Wang, Phys. Lett. A333, 303(2004) 

28. L. Liu, Z. Han and S. He, Optics Express 13, 6645(2005) 

29. E. Ozbay, Science  311, 189(2006) 

30. Y. N. Wang and Z. L. Mislovic, Phys. Rev. A69, 022901(2004) 

31. S. M. Mikki and A. A. Kishk, IEEE Trans Antenna and Propagation  57, 412(2009) 

32. M. A. Naginov, H. Li, A. Yu, D.Barnekov and E. E. Narimonov, Optics Lett.  35, 1863(2010) 

33. Z. Jacob, J-Y Kim, G. V. Naik, A. Bolasseva and V. M. Shaloev, Appl. Phys. B100, 215(2010) 

34. I. S. Nefedov and S. A. Tretyakov, Phys. Rev  B84, 113410(2011) 

35. I. S. Nefedov and C. R. Simovski, Phys. Rev.  B84, 195459(2011) 

36. S. H. Heshemi and I. S. Nefedov, Phys. Rev B86, 195411(2012) 

37. I. S. Nefedov, Material Physics and Mechanics,  13, 1-8(2012) 

38. C.A. Balanis, Advanced Engineering Electromagnetics, 2nd ed (John Wiley &sons, New York, 

2012) 

39. Q. Q. Wang, T. Chen, M. Li, B. Zhang and K. P. Chen, Appl. Phys. Lett. 102, 011103(2013) 



Research Article          CODEN: IJPAKY             Impact Factor: 4.226          ISSN: 2319-507X                                                                                                     
Rakesh Kumar, IJPRET, 2016; Volume 4 (7): 92-106                                                       IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

106 

40. Q. Q. Wang, T. Chen and K. P. Chen, Appl. Phys. Lett. 102, 131117(2013) 

41. M. Zhang, E. J. R. Kellrbar, T. H. Runcorm and Z. Sunetal, Optcs Express  21, 23261(2013) 

42. Jie Ma and Jiyong Wang etal. Sci Rep.  4, 5016(2014) 

43. S. T. M. Sagar, M. W. Wolfalt and A. Holian, Nanotoxicology 3, 317(2014) 

44. A. J. Chemov, A. V. Tanssev and V. I. Konov, Optics Lett. 33, 12 (2014) 

45. J. H. Bartha-vavi etal. Chemcatchem  7, 1122(2015) 

 


