
Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

214

 INTERNATIONAL JOURNAL OF PURE AND
APPLIED RESEARCH IN ENGINEERING AND

TECHNOLOGY
A PATH FOR HORIZING YOUR INNOVATIVE WORK

CROSSCUT POLICY FOR AUGMENTING CACHE MEMORY PERFORMANCE

MS. ASHWINI R. GHULE1, PROF. GAURAV D. GULHANE2, DR. H. R. DESHMUKH2

1. PG Scholar, Department of Computer Science & Engineering, Dr. Rajendra Gode Institute of Technology & Research,
Amravati.
2. Department of Computer Science & Engineering, Dr. Rajendra Gode Institute of Technology & Research, Amravati.

Accepted Date: 15/03/2016; Published Date: 01/05/2016

\

Abstract: For the system, performance of cache memory is the very importance issue. Until now,
many multilevel cache management policies like PROMOTE, DEMOTE, LRU-K, , hybrid have been
developed but still the performance of Cache memory is not fast. Some approaches like demote or
promote are based on the latest cache history information, which is inadequate for applications
where there are regular demote and promote operations occur. The major drawback of these
policies is to pick a victim. In this paper, the new multilevel cache replacement policy called Crosscut
is put into action to improve the cache performance of a system. The decision of promotion and
demotion is based on the block’s previous N-step promotion or demotion history and the size and
resident time of the block in the cache. In literature it is found that, existing policies keeps track on
last K references of the block within a last cache level, while Crosscut keeps track of the information
of the last K movements of blocks among all the cache levels. Crosscut algorithms are designed that
can efficiently describe the activeness of any blocks in any cache level. Experimental results show
that Crosscut achieves better performance compared to existing multilevel cache replacement
policies such as DEMOTE, LRU-K, PROMOTE, and under different workloads.

Keywords: Demote, multilevel cache; hints; demote; promote; recency;

Corresponding Author: MS. ASHWINI R. GHULE

Access Online On:

www.ijpret.com

How to Cite This Article:

Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226

PAPER-QR CODE

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

215

INTRODUCTION

Memory today is very inexpensive, and becoming increasingly large. Despite the principle of

locality, a cache will not function effectively if its size is many orders of magnitude smaller than

the memory it is buffering [1]. A natural solution to this problem is to make caches larger as

well, perhaps on the order of megabytes instead of kilobytes. Such a cache may be able to hold

a sufficient range of information, but is too large to be managed effectively and accessed

quickly.

This trend leads to the use of multilevel caches: a small cache on the processor chip, and a

larger cache on a separate chip nearby. These are often called the Level 1 (L1) cache and the

Level 2 (L2) cache, respectively. Level 1(L1) cache is present in the processor and the Level 2

(L2) cache is present is present on the motherboard.

The performance benefit of cache plays significant role in calculating overall system

performance [2]. Though cache memories are more expensive than mass storage memory like

hard disk, most computing devices are equipped with a cache [3]. Caching is one of the most

important methods to bridge the gap between different systems access speed, and it is widely

used in database management systems for storing frequently accessed queries, file systems for

storing file allocation table (FAT), disk drives, operating systems, data compression [4] etc. A

good caching algorithm can cache frequently used data blocks in the buffer pool efficiently and

provide faster access to data and further improve the throughput and reduce the response time

[5].

Various read caching algorithms have been proposed over last few decades for example, LRU

[6], LRFU [7], and LFU [8]. Most of the work in these algorithms has focused on the single layer

of cache that separates the producer and consumer of the data. As the size of cache is very

small, it is difficult to keep all the data required by the application into the single level cache. A

major problem with these approaches is that it fails to address the problems: when the access

pattern of the workload changes, the cache policy doesn’t adaptively adjust at the same time

[9]. So the solution is handling dynamic change in the cache replacement in response to

changes in the access pattern [10]. So it is essential to use multiple layers of cache for better

cache performance. All the necessary data is available into the cache. The most recently used

data is kept in first level and the least recently used data is kept at last level. In real time

systems, data travels through multiple cache layers before reaching to an application. It seemed

that the performance of single-level cache replacement policy is very poor when used in

multilevel caches. Thus multilayer cache management policies like PROMOTE [11][12] and

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

216

DEMOTE, LRU-K [13] have been proposed. Hints [14] are used to identify and manage the data

in multi level cache. Hints give the latest history of the block in the cache. According to the

necessity, cache blocks are promoted from lower level to upper level or demoted form upper

level to lower level on the basis of hints.

Based on different roles in a multilevel cache, hints can be classified into three categories:

•Demote hints: There are the flags used to show the promoted data from the upper level.

Demote hint requires only few bits of memory.

• Promote hints: These are the flags used to show the cache hit data which is promoted from

the lower level cache.

• Application hints: These are the flags used to show the data information in different

applications. Application hints may be static or dynamic and well defined based on experienced

functions in various access patterns.

There is a problem in using hints in correctly identifying most important or less important data,

and then quickly promoting more important data to the upper level(s) and demoting less

important data to the lower level(s).These hints provide just a block’s latest hint information at

last level, but lack some important hint history, which reflects a block’s past movement among

various cache levels. Another problem is giving a unified management on demote and promote

hints. These hints are managed separately which may bring an incomplete view on a data and

an additional management cost.

In this paper, a new cache block replacement policy is proposed for multilevel cache memory. It

constitutes the feature of the two policies: PROMOTE [11] and DEMOTE. The simulation results

are analysed for performance analysis of this policy by hit ratio and average response time. In

the remaining part, design and algorithms of proposed policy in section II. In section III, the

simulation results are analysed against existing multilevel cache policies. Section IV concludes

the paper.

I. DESIGN AND MODELING OF CROSSCUT

The main purpose of this design is to improve the overall cache performance from the

application point of view by putting more active data closer to the application which is the

upper level of cache hierarchy. To achieve this objective, a multilevel cache management policy

is implemented that makes the decision whether to promote a data block or demote a data

block based on N-step history information known as hints as well as size and recency of the

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

217

block in the cache. This policy uses the concept of compressed caching [12]. The data is stored

in the cache memory in compressed form therefore more data can be stored than the single

level cache [4].

It combines two existing policies: DEMOTE /PROMOTE [11]. The replacement decision is based

on hints and size and recency based insertion. In this paper, the focus is more general on

demote and promote hints to carry additional information of data blocks from the upper

level(s) or the lower level(s) [16] .It is assumed that the cache memory has number of cache

levels. The size of the cache level goes on increasing. The cache level nearer to processor is

smallest in size; the second level is larger than first one and so on up to last level. The problem

with compressed cache is fixed sized cache block. If the particular data is to be stored in cache

which is having small size than cache block, then the remaining memory space is consumed by

that block cannot be used by other application. Therefore cache block [17] in this policy is

having variable size.

The selection of the cache block to be replaced with the main memory block is done by

considering various factors like number of promotion and demotion, size of the block, and

recency of the block in the cache memory [14]. Crosscut policy uses the combination of two

existing cache management policy: PROMOTE and DEMOTE for detecting the number of

promotions and demotions of the block [15]. Usually, promotions are more preferred than

demotion of the block. Two types of hints [7] are used here: demote and promote hints. It

focuses on demote hints to carry additional information of data blocks from the upper level(s)

and promote hints to carry additional information of data blocks from the lower level(s).

It is difficult to select a victim by considering recency and the size factor of the block to be

replaced [14]. There are four types of blocks while considering these two factors.

1) Less resident time and Small in size

2) More resident time and Small in size

3) Less resident time and Large in size

4) More resident time and Large in size

It is obvious that type 3 class blocks should be removed from the cache and type 2 class blocks

should be kept in cache. The replacement decision on other two types is complex. However,

type 1 class blocks can be managed by considering size as an important factor but the difficulty

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

218

is with type 4 class blocks. They have larger size and more recency value. Large amount of

memory space is consumed by such blocks which can be used for other application.

There is another problem in deciding whether the block is small or large. The selection of the

threshold value which decides the small or large block is essential. Selecting large threshold

value means re-reference rate is given more weight than the size information, whereas a lower

threshold value means size information is given more weight than the re-reference rate [15]. If

the value of threshold is decided on the basic of performance of particular application, it is not

easy to implement this solution in real systems, because this threshold value varies with every

application. In other words, if particular threshold value is best for an application then it can be

worst for another application.

A. Crosscut Modeling

As shown in Figure 1, N-step hint for a random data block, the latest hint is 1st step hint while

the oldest hint is Nth step hint. An N-step hint is a sequence which consists of 1st step, 2nd step,

3rd step, and Nth step hints. A Crosscut technique is proposed in this paper to solve the problem

of detecting most active and less active cache block which is solved by using multiple step

history hint information. It compares the activeness of data blocks in any cache level and

perform unified management on demote and promote hints.

 This cache model consists of N levels L1, L2...Ln. For a random cache level Li, demote hints

(denoted by Di, 2 ≤ I ≤ N+1) are from the next upper level Li−1 to the current level Li while

(Pi, ≤ I ≤ N) delegates promote hints from the next lower level Li+1 to the current level. In

this design, each block can be promoted or demoted by one level in a single transaction [1].

Therefore, initially the more important data blocks placed in a higher cache level. This

approach focuses on read I/O requests and writes requests can be handled by other

separate hints. To record the movements of active data blocks among various cache levels

step hint value (SHV) are used.

 N-step Hint Values (NHVs) are used to identify the status of a data block. Based on the all

NHV’s of any cache level, demotion or promotion policies will be applied when the NHV of a

data block is small or large.

 If the block is demoted from upper level cache then its step hint value (SHV) is set to 1 and if

promoted to upper level cache then its SHV is set to 0 in NHV.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

219

Figure 1: N-step Hint

 The promotion condition of the block depends upon activeness if the block. It is

determined by calculating its N-step hint value (NHV).The NHV is the sum of all SHV at a

particular level. The block having maximum NHV is more active and selected for promotion and

the block with minimum NHV is less active and selected for demotion. Equation 1 can easily

identify the most active blocks in a random level L for promotion and the least active blocks for

demotion by checking the NHVs.

…….. (1)

B. Crosscut Algorithms

For each level in this multilevel cache design, N-step hints are added into single level cache

algorithms, which can be any existing cache algorithms. For testing purpose, Hint-N [1]

algorithms are used to describe the interaction among cache levels while using LRU [17] to

characterize a block within a specific level. Hint-N algorithms are developed, which have the

following process on NHV’s and two policies to decide whether a data block should be demoted

or promoted. Here, the Least Recently Used policy is used to select a victim LRU list for

demotion if required.

This policy constitutes three algorithms:

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

220

A. Initialization

B. Promotion

C. Demotion

 Initialization and Update of NHVs

The following rules are used to initialize and update NHVs in the Hint-N algorithms as shown in

Algorithm.

1) Initially all the levels of the cache are empty, KHV will be set to 0.

2) If the block is not present in cache then put all of its NHV’s to NULL.

3) If the block is in cache memory, then update its NHV according to its latest hint information.

 Promotion Policy

When a data block in Li becomes more active than the least active block in Li−1, it should be

promoted. If there is a read request to a block which is not present in the upper level cache

then:

1) Calculate minimum NHV (NHV min (i)) for the level (Li) and send this value to next lower

level cache (Li-1).

2) In the next lower level cache, check whether the block is present or not otherwise repeat

step 1.

3) If the block is present then check whether it satisfies the promotion condition:

If YES:

a) If there is space in upper level cache, promote the block to upper level and update its

NHV.

b) If upper level cache is full then Replace this block with the block which have largest size and

lowest locality of reference and which is present at the bottom of LRU [19] list and update

NHV of both the blocks.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

221

c) If NO, go to step 1.

4) Else fetch the block from main memory [6]. In this way, promotion takes place.

 Demotion Policy

If there is read request to a block from processor and is need to replace a block in upper level

with the required block, then the demote algorithm works.

1) Calculate minimum NHV (NHV min) for that level.

2) Check how many blocks having their NHV equal to minimum NHV.

3) Among these blocks, select a block which is at the bottom of LRU list.

4) Check whether the block belongs to which type

a) If the block belongs to type 1, go to step e.

b) If the block belongs to type 3, go to step 5.

c) If the block belongs to type 2, go to step e.

d) If the block belongs to type 4, check the block for threshold. If the block is smaller than

threshold value, go to step e

e) Select the block which is above the previous block in LRU list. Go to step 4.

5) Replace the requisite block with the current block and update NHV’s of both the blocks.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

222

Figure 2: Flow of Promotion policy

Figure 3: Flow of Demotion policy

In this way, this crosscut algorithm gives better cache performance than other cache

management policy [20]. The above algorithm can be simulated on cache simulator to see the

performance. It shows better hit ratio than other policies.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

223

III. SIMULATION RESULTS AND ANALYSIS

To verify the effectiveness of Crosscut policy, trace driven simulation are used to evaluate the

Crosscut algorithms and compare them with three popular multilevel cache like FIFO [21], LRU-

K [22], DEMOTE [11], PROMOTE [20] under different workloads as shown in Figure 3.

A. Simulation Methodology

The new .net based simulator is developed, hybridcachesim. Within each cache level, LRU policy

is used. The experiment results show the % hit ratio of the Crosscut against existing multilevel

cache policies. Four different traces are used in this simulation as shown in Figure 4:

1) Load of 1000 instruction, each having maximum frequency of 20 occurrences.

2) Load of 1500 instruction, each having maximum frequency of 15 occurrences.

Figure 4: Performance of Crosscut policy under different workload

Crosscut approach is concerned with the applications which have many blocks active among

different cache levels, so the system is set to warm-up in hybridcachesim so that the enough

data blocks have been flooded to all cache levels [19]. Unless stated, the default parameters

used are: two cache levels (n = 3), number of blocks per levels (10), and block size (Sb=10 KB).

The aggregate cache size is the product of all cache level, number of blocks per level, and block

size. Write requests are ignored in this simulation. Based on the default settings of

hybridcachesim, the average access times of cache and disk are 0.25ms and 10ms, respectively.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

224

B. Results and Analysis

1) Number of Demote/Promote operations

Experimental results shows that the number of promote/demote operations decreases with

increased cache size because the possibility of replacement of a block is decreased when the

cache becomes larger. The number of operations also decreases with increased block size when

the number of blocks is reduced. It is observed that Crosscut reduces up to 15% of

Demote/Promote operations compared to the PROMOTE [20][5] algorithm. This prevents

unnecessary movement of cache blocks among different cache levels by keeping the data at the

most appropriate level.

2) Aggregate hit ratio of different multilevel cache policies

Next, the aggregate hit ratios of different multilevel cache management policies are calculated.

 % Hit Ratio = (No.of Cache hits∗Total no.of request) ∗100… (3)

 % Miss Ratio = (No.of Cache miss∗Total no.of request) ∗100 … (4)

Figure 5: Comparison of performance of Crosscut policy with different multilevel

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

225

The results are shown in Table I. PROMOTE and DEMOTE [1] policies gives same hit ratio. It is

observed that if number of cache levels going on increasing, the aggregate hit ratio increase. Up

to four levels (N ≤ 4), the performance benefit is more as compared to cache overhead

problems like cache coherence. But after the number of levels reaches to five, the aggregate hit

ration remains constant and there is increase in the overhead in maintaining the large cache as

shown in the Figure 2. From these results, Crosscut achieves higher aggregate hit ratio than

existing multilevel cache policy.

3) Average response time of different multilevel cache policies

The average response time and average hit ratio of multi level cache replacement policy is

higher than those for single level. It is a simple and efficient approach to handle demotes and

promotes hints. When more hint information is used, a better decision can be made whether to

demote or promote a block. When the number of cache increases above four the access

overhead of cache table increases and the performance degrades.

TABLE I. POLICIES COMPARISON ON THE BASIS OF DIFFERENT WORKLOAD

Cache Size(Kilo
bytes)

% Hit ratio

PROMOTE

LRU-K

DEMOTE

CROSSCUT

256 49.45 32.83 49.60 50.80
512 63.25 42.47 63.46 65.79
1024 81.45 53.65 81.46 86.19
2048 90.52 60.70 90.64 92.64
4096 96.12 64.63 96.32 98.75

IV. CONCLUSION

In this paper to keep track of last N-step history information about the movement of a data

block among multiple cache levels, Crosscut multilevel cache management policy is

implemented. By the frequency of the promote/demote operations of a cache block, size and

resident time of the block at the particular cache level , the activeness of a block is determined

using above mentioned strategy. Crosscut promote active data to the upper level and vice versa

more efficiently. To identify the activeness of the cache blocks Crosscut model is developed. As

compared to FIFO, LRU-K DEMOTE, PROMOTE and Hybrid algorithms under different I/O

workloads, is found that Crosscut achieves better performance.

Research Article Impact Factor: 4.226 ISSN: 2319-507X
Ashwini R. Ghule, IJPRET, 2016; Volume 4 (9): 214-226 IJPRET

Available Online at www.ijpret.com

226

II. REFERENCES

1. Shrawankar and R. Gupta, “Block Pattern Based Buffer Cache Management.” In 8th

International Conference on Computer Science & Education (ICCSE 2013).

2. Gill, M. Ko, B. Debnath, and W. Belluomini, “STOW: A spatially and temporally optimized

write caching algorithm.” In Proc. of the 2009 USENIX Annual Technical Conf., San Diego, CA,

June 2009.

3. Yadgar, M. Factor, and A. Schuster, Karma: “Know-it-all replacement for a multilevel cache.”

In Proc. of the 5th USENIX Conf. on File and Storage Technologies, San Jose, CA, February 2007.

4. Lampson, “Hints for Computer System Design,” Proc. Ninth ACM Symp. Operating System

Principles, Oct. 1983.

5. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka, “Informed Prefetching and

Caching,” Proc. 15th ACM Symp Operating System Principles, Dec. 1995.

6. Gill. “Systems and methods for multi-level exclusive caching using hints”. US Patent No.

7761664 B2, July 2010.

7. Gill, “On multi-level exclusive caching: Offline optimality and why promotions are better

than demotions”. In Proc. of the6th USENIX Conf. on File and Storage Technologies, San Jose,

CA,February 2008.

8. Yadgar, M. Factor, K. Li, and A. Schuster, “Management of multilevel, multiclient cache

hierarchies with application hints.”ACM Transactions on Computer Systems, 29(2): Article 5,

2011.

9. Zhu and H. Jiang, RACE: “A robust adaptive caching strategy for buffer cache. IEEE

Transactions on Computers, 57(1):25–40, 2007.

10. Chikhale, U. Shrwankar, “Hybridmulti-level cache management policy”, IEEE conference on

communication systems and network topologies, 978-1-4799-3070, march 2014.

11. Bairavasundaram, M. Sivathanu, A. Arpaci-Dusseau, and R.Arpaci-Dusseau, “X-RAY: A Non-

Invasive Exclusive Caching Mechanism for RAIDs,” Proc. 31th Ann. Int’l Symp. Computer

Architecture, June 2004.

12. Wu, X. He, Q. Cao, and C. Xie, “Hint-K: An Efficient Multi-Level Cache Using K-Step Hints,”

Proc. 39th Int’l Conf. Parallel Processing, Sept. 2010.

