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Abstract: The generalised problem in free vibration analysis of any structure is that of evaluating an eigenvalue λ (= ω2), which is a 

measure of the frequency of vibration together with the corresponding eigenvector x indicating the mode shape. This presentation consists 
of determination of fundamental vibration frequencies of a general structure. The frequencies can be determined by the finite element 
method using characteristic polynomial technique, Vector iteration technique and transformation methods.. Power iteration, inverse 
iteration and subspace iteration methods use the property of the Rayleigh quotient. Power iteration leads to evaluation of the largest 
eigenvalue. Subspace iteration technique is suitable for large scale problems and used in several codes. The inverse iteration scheme can 
be used for evaluating the lowest eigenvalues. The basic approach in transformation method is to transform the matrices to a simpler form 
and then to determine the eigenvalues and eigenvectors. In this presentation the main focus is to discuss the transformation method, to 
develop the related computer program and validate the results. The results show good agreement with those determined by classical 
method.  

Keywords: Free vibration analysis, Fundamental natural frequencies, Mode shapes, Eigenvalues  and Eigenvectors , Generalised 

eigenproblem, Standard eigenproblem, Stiffness and mass matrices. 
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INTRODUCTION 

 

Free vibration analysis is often required for most of the important structures / structural 

elements in the field of civil, mechanical, automobile, aerospace, optical, marine, nuclear and 

structural engineering. The differential characteristics in free vibration analysis enable 

engineers to design better and lighter structures. The Study of their free vibration behaviour is 

very important to the structural engineers when these structures are subjected to external 

complicated dynamic loads such as earthquake, wind, impact and wave forces. An 

understanding of the free vibration frequencies of any system (especially, the fundamental 

frequency) is the prerequisite to the understanding of its response to forced vibration. In civil 

engineering, buildings, horizontal floors, beams, columns are directly exposed to static and 

dynamic loadings. To determine the eigenvalues and eigenvectors which are the measure of the 

frequency of vibration and mode shapes the suitable method is to be selected by the analyst as 

per the requirements in design of structures.                  

 

II    LITERATURE REVIEW 

The literature of eigenproblems is quite large, both for theoretical aspects and numerical 

algorithms, and only a small fraction of it can be cited.  Hughes T.J.R. [1], Bathe K. J. [2] and 

Kardestuncer H. [3] have written extensive discussions about eigenproblems in their Finite 

Element Books. Wilkinson J.H. [4]  wrote a book about the algebraic eigenvalue problem in 

1965. Bathe K. J. and Wilson E.L. [5] published a paper on solution methods for eigenvalue 

problems in structural mechanics in 1973. In 1980, Parlett B.N. [6] introduced the method for 

solution of the symmetric eigenvalue problem. In 1984, Jennings A. [7] wrote about eigenvalue 

methods for vibration analysis. Sehmi N.S. [8]  gave large order structural eigenvalue 

techniques in 1989. Cheung Y.K. and Leung A.Y.T. [9]. published a book on finite element 

methods in dynamics in 1991  In 1994, Tichler V.A. and Venk ayya V.B. [10] evaluated 

eigenvalue routines for large scale applications. Bertolini A.F. [11] reviewed eigensolution 

procedures for linear dynamic finite element analysis in 1998. 

Undamped free vibration analysis of the entire building is performed as per established 

methods of mechanics using appropriate masses and elastic stiffness of the structural system to 

obtain natural period (T) and mode shape {ɸ} of those of its modes of vibration that need to be 

considered as per I.S.1893-2002(part 1) clause No. 7.8.4.2.[12] 

Analytical solutions for dynamic response of structures are available for very few cases i.e. for 

structural elements with simple geometry and boundary conditions. But for elements with 

complex boundary and boundary conditions, solutions are possible only with the help of 

numerical methods. The most commonly used numerical method is finite element method. 



Research Article                             Impact Factor: 4.226                                   ISSN: 2319-507X                                                                                                     
R. R. Gadpal, IJPRET, 2016; Volume 5 (2): 59-69                                                                IJPRET 
 

 
 

Organized by C.O.E.T, Akola, ISTE, New Delhi & IWWA.       Available Online at www.ijpret.com 
 
 

61 

Thus the present study evaluates the first few dominant modes of vibration frequencies of 

structures. The frequencies estimated by the proposed formulation and program coincide well 

with those obtained by the finite element method, which can serve as a design aid for 

structural engineers. 

III.        FINITE ELEMENT FORMULATION 

For a positive definite symmetric stiffness matrix [K] of size n x n, there are n real eigenvalues 

and corresponding eigenvectors satisfying equation (1).  

[K] – λ [M] {x} ={0}                            ...(1) 

The above eigenproblem asks for the values of  a scalar λ such that the matrix equation  (1)                           

has solutions other than  trivial solution {x} = {0}. There are at most n nonzero roots  λi , not 

necessarily all distinct. The  λi  are called eigenvalues, characteristic values, latent roots or 

principal values.  The eigenvalues may be arranged in ascending order such that  

0 ≤ λ1 ≤ λ2  ≤ ..... ≤ λn                            ... (2) 

The vector corresponding to each  λi  is an {x}i called as an eigenvector, characteristic vector, 

principal vector, normal mode or natural mode. The eigenvectors possess the property of being 

orthogonal with respect to both the stiffness and mass matrices: 

xi
T M xj  =  0  if  i ≠ j 

xi
T K xj  =  0  if  i ≠ j               ...(3) 

The lengths of eigenvectors are generally normalized so that 

xi
T M xj  =  1                ... (4) 

The foregoing normalization of the eigenvectors leads to the relation  

xi
T K xj  =  λi                    ... (5) 

In many codes, other normalization schemes are also used. The length of an eigenvector may 

be fixed by setting its largest component to a preset value, say, unity.    

 The eqn (1) in the form ([K] – λ [M]){x} ={0} is called generalised eigenproblem or simply 

eigenproblem and further can be simplified as  

[K] {x} = λ [M] {x}                  ...(6) 

If , however, matrix [M] happens to be identity matrix [ I ] or premultiplying both sides of above 

equation by [M -1] , we get, 

[M -1] [K] {x} = λ [M -1] [M]) {x} 

[A] {x} = λ [ I ] {x} 

or         [A] {x} = λ{x}                                     ...(7) 

 where, [A] = [M -1] [K] 

 Equation (6) is called standard eigenproblem in which matrix [A] will be un-symmetric 

and moreover it is necessary to find [M -1]. 
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 If {x} contain only d.o.f. that may assume non-zero values after all rigid-body modes and 

mechanisms (if any) are suppressed, thus [K] is positive definite. If element mass matrices are 

consistent or lumped with strictly positive definite, [M] is also positive definite. Then the 

number of non-zero λi  is equal to number of d.o.f. in {x}. Occasionally two or more λi are 

numerically equal. Then there associated vibration modes {x}i are not unique, but mutually 

orthogonal modes for the repeated  λi can be established. A partly or completely unconstrained 

structure or a structure that contains a mechanism, has a positive semidefinite  [K] and a zero 

eigenvalue associated with each possible rigid body motion or mechanism . The associated 

mode shape describes the rigid body motion or the mechanism motion. If [M] is lumped with 

some zero diagonal coefficients, an infinite eigenvalue is associated with each Mii. Degrees of 

freedom associated with Mii can be removed by static condensation [13] before extracting 

eigenvalues, without affecting the remaining eigenvalues and mode shapes. 

The eigenvalue and eigenvector evaluation procedures fall into the following basic categories. 

1. Characteristic polynomial technique 

2. Vector iteration techniques  

3. Transformation methods 

 

Amongst these methods, transformation methods are suitable for large scale problems and will 

be discussed in details.  

Characteristic Polynomial 

From eqn.(6), we have  ([K] – λ [M]){x} ={0}. If the eigenvector is to be non-trivial, the required 

condition is  

det ([K] – λ [M]) ={0}               ... (8) 

 This represents the characteristic polynomial in  λ.  

 The characteristic polynomial method can solve 2 x 2 problems by hand calculations. 

However it is also found uneconomical for computer usage because it is rather tedious and 

requires further mathematical considerations. We now discuss the other two categories. 

Vector Iteration Methods 

Various  vector  iteration methods use the properties of  Rayleigh Quotient. For the generalised 

eigenvalue problem given in eqn. (6), Rayleigh quotient can be defined as , 

 Q (v) =                 ... 

(9) 

where, v is an arbitrary vector. A fundamental property of the Rayleigh quotient is that it lies 

between the smallest and largest eigenvalue. 
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λ1  ≤  Q (v)  ≤  λn            ... (10) 

In the inverse iteration scheme [14], we start with a trial vector xo and obtain the eigenvector xk 

after normalization and satisfying the requirements of tolerance. This scheme converges to the 

lowest eigenvalue, provided the trial vector does not coincide with the one of the eigenvectors. 

Other eigenvalues can be obtained by shifting, or by taking the trial vector from a space that is 

M – orthogonal to the calculated eigenvectors. 

Transformation Methods 

 The basic approach in this method is to transform the matrices to a simpler form and 

then to determine the eigenvalues and eigenvectors. The major methods in this category are 

the generalised Jacobi Method and the QR method. These methods are suitable for large-scale 

problems. In the QR method, the matrices are firs reduced to tridigonaliztion form using 

Householder matrices. The generalised Jacobi Method uses the transformation to 

simultaneously diagonalize the stiffness and mass matrices. This method needs the full matrix 

locations and is quite efficient for calculating all eigenvalues and eigenvectors for small 

problems.  

 If all the eigenvectors are arranged as columns of a square matrix X and all eigenvalues 

as the diagonal elements of a square matrix Ʌ, then the generalised eigenvalue problem can be 

written in the form 

 [K] [X ] = [M] [ X ] [Ʌ]           ... (11) 

where ,     [ X ]  = [ X1, X2 ,......, Xn ]                                  ... (12) 

       [Ʌ]   =             ... 

(13) 

Using M- orthonormality of eigenvectors, we have, 

 [X]T [ M ] [ X ] = [Ʌ]          ... (14) 

and  

 [X]T [ K ] [ X ] = [ I ]          ... (15) 

 

where  [ I ] = Identity matrix 

 

Generalised Jacobi Method 

In the generalised Jacobi method a series of transformations  P1,   P2,....., Pl  are used such that if  

P represents the product 

P  =  P1 P2..... Pl           ... (16) 
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Then the off diagonal terms of  PTKP and  PTMP are zero. In practice, the off-diagonal terms are 

set to be less than a value smaller than tolerance.  

 

[ K*] = [Pl ]T .... [P2]T[P1]T[ K] [ P1] [ P2] .... [ Pl ]     ... (17a) 

 

[ M*] = [Pl ]T .... [P2]T[P1]T[ M] [ P1] [ P2] .... [ Pl ]     ... (17b) 

 

[ K*] and [ M*] are the diagonal matrices. To eliminate [ Kij] and [ Mij] simultaneously we have 

to let transformation matrix [ P ] in such a way that at step k,  

 

[ Pk ] =   and thus,  [ Pk ]T =         .... (18) 

[ Pk ] has all diagonal elements equal to 1, has a value of  α at row i and column j and β at row j 

and column i , and all other elements equal to zero. The scalars α and β are chosen so that the ij 

locations of  Pk TKP and  Pk TMP are simultaneously zero. 

Pk
TKP =          

Considering only 2 and 4 rows and 2 and 4 columns are affected                                      

 

 

Thus new K24 =  = (1+ )   

Now in general in order to make the non-diagonal elements equal to zero we can write Pk
TKP  

and  Pk
TMP as, 
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      (1+ )   = 0                     ... (19)   

and             (1+ )   = 0                        ... (20) 

Premultiplying eqn (19) by   and eq. (20) by  and solving the simultaneous equations, we 

get 

α (  -  + β (  -  = 0 

or         α (  + β (  = 0              ... (21) 

where,  A = (  -  and  B = (  -  

Solving Eqn (21) , β = -    and after substituting in eqn  (19), we get   

 -   = 0       ... (22) 

Multiplying  eqn (22) by B and dividing by   we get 

B - A +  -  = 0  

A +  α   - B = 0       ... (23) 

Introducing C =  and substituting values of A and B, we get  

        C =  

Multiplying eqn (23) by 0.5, we get 

0.5 A + 0.5 α C  - 0.5 B = 0       ... (24) 

Solving eqn (24) , we get  

α  =           ... (25) 

Particularly, 

When,  A ≠ 0,  B ≠ 0,      α  =  and  β = -     ; 

 A = 0,  β = 0  and    α  = -    ; 

 B = 0,  α = 0  and    β  = -                                                       ... (26) 
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When both A and B are zero, any one of the two values listed can be chosen. 

Adopting the above procedure for determination of matrices [ K*] and  [ M*] in eqs. (17), the 

eigenvalues and eigenvectors are given by, 

λii   =    and   xij   =     ,   or in general   

Ʌ =       and      X =                                               ... (27) 

where,    =     and  =                           ... (28) 

In the generalized Jacobi program, the elements of  K and M  are zeroed out in the order 

indicated in fig.1. Once Pk  is defined by determining α and β,  Pk
T[  ]Pk can be performed on K 

and M  as shown in fig.2. Also by starting with P = I, the product  PPk is computed after each 

step. When all elements are covered as shown in fig.1, one pass is completed . After operations 

at step k, some of the previously zeroed elements are altered. Another pass is conducted to 

check for the value of the diagonal elements. The transformation is performed if the elements 

at ij is larger than a tolerance value.  A tolerance 10-6   smallest  Kii  is used for stiffness, and 

10-6   largest  Mii  is used for the mass. The tolerance can be redefined for higher accuracy. The 

process stops when all off-diagonal elements are less than the tolerance. 

 

               Fig .1  Diagonalization            Fig .2 Multiplication of  Pk
T[  ]Pk  
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If the diagonal masses are less than the tolerance, the diagonal value is replaced by the 

tolerance value, thus, a large eigenvalue will be obtained. In this method K need not be positive 

definite. On the basis of above formulation a computer program is developed and results are 

compared with the standard available results. 

IV NUMERICAL EXAMPLE 

Example 1: A cantilever having geometrical and material properties is as shown in fig. 3 

Determine all the eigenvalues and eigenvectors for the beam shown in fig. 3 using the program 

developed on the basis of above formulation. 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

E = 200 GPa,    ρ = 7840 kg/m3, 

I = 2000 mm4, A = 240 mm2 

(b) 

 

Fig. 3 Cantilever Beam Model 

Solution :  

The degree of freedom at each node is deflection (amplitude) w and slope 𝜕𝑤/𝜕𝑥. Using 

standard finite element procedure [15], we obtain the stiffness and mass matrices by hand 

calculations: 
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K =  ;  M = 0.001  

 

The input data for the developed program is same as that for inverse iteration program. 

However,  the program coverts to full matrices in calculations. Convergence occurs at the 

fourth sweep. The solution is presented in Table1. and compared with the standard results.  

 

Table 1. Natural frequencies & Mode shapes 

Results reported in literature in full form Results obtained with present analysis 

Natural 

frequency 

(eigenvalue) 

λ 

Mode shapes (eigen vectors) 

U 

Natural 

frequency 

(eigen value) λ 

Mode shapes (eigen vectors) U 

2.0304 x 104 0.64,  3.65, 1.88, 4.32 2.032x 104  3.652,  

8.0987 x 105 -1.37, 1.39, 1.901, 15.27 8.183x 105 

 

-1.375, 1.390, 1.906, 15.25 

9.2651 x 106 -0.20, 27.16, -2.12,-33.84 9.35 x 106 -0.2043, 27.17, -2.121,-33.81 

7.7974 x 107 0.8986, 30.89, 3.546, 119.15 8.268 x 107 0.9055, 30.89, 3.776, 119.2 

 

The natural fundamental frequencies of the structure / component can be determined using 

classical methods as well as using finite element technique which is widely reported in the 

literature. It is well known that the numerical analysis results are valid only for particular values 

of the parameters considered in the analysis. The structural engineers concerned with dynamic 

analysis or design of structures need a design formula or program for rapid determination of 

the governing natural frequency. The numerical values obtained by running the program are 

quite gratifying with those reported in literature[16] and reproduced in Table 1. 

VI CONCLUSIONS: 

The fundamental frequencies and mode shapes were determined by finite element method. 

The devised program is quite useful for determining Fundamental natural frequencies, Mode 

shapes, by evaluating eigenvalues  and eigenvectors in the Generalised eigenproblem., 
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