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Abstract: - Using the theoretical formalism of Armen Sedrakian and John W. Clark [Phys. Rev C73, 035803 

(2006)], we have studied pair condensation and bound states in fermionic systems. We evaluated the gap 
function and chemical potential as a function of temperature and observed that in the density-temperature 
domain there is a crossover from BCS condensate of Cooper pairs to BEC condensate of tightly bound 
deuterons. In an attractive fermion system, one studies the two-body (dimmer) and three-body (trimmers) 
bound states in free space. We observed that at high temperature/low density the system is populated by 
trimmers whereas low temperature/high density system supports the condensate of neutron-proton Cooper 
pairs. This study is quite helpful in order to understand the interaction characteristics of nuclear system. Using 
the theoretical formalism of Luca Salasnich [Journal of Physics: Conference series 497, 012026 (2014)], we 
have studied the fermionic condensation in nuclear matter and neutron star. Our theoretical evaluated result 
of condensate fraction (n0/n) of neutron pairs in neutron matter as a function of neutron- number density 
(n/nS) , nS is nuclear saturation density indicates that condensate fraction increase and attains maximum and 
then decreases. Our evaluated results of condensate fraction (n0/n) as a function of scaled distance (r/R) for 1.4 
solar mass neutron star show that the maximum condensate fraction exists in the crust of neutron star. Our 
evaluated theoretical results are in good agreement with the other theoretical workers. 
 

Keywords: Pair condensation, two-body bound state (dimmer), three-body bound state (trimmers), neutron-

proton Cooper pairs, BEC condensate of deuterons, neutron matter, neutron star. 
 

Corresponding Author: MR. ASHOK KUMAR SINGH 

Access Online On: 

www.ijpret.com 

How to Cite This Article: 

Ashok Kumar Singh, IJPRET, 2017; Volume 6 (5): 1-25 
 

PAPER-QR CODE 

 



Research Article          CODEN: IJPAKY             Impact Factor: 4.226          ISSN: 2319-507X                                                                                                  
Ashok Kumar Singh, IJPRET, 2017; Volume 6 (5): 1-25                                                   IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

2 

INTRODUCTION 

In this paper using the theoretical formalism of A. Sedrakian and John W. Clark1, we have 

theoretically studied the pair condensation and bound states in fermionic systems. We have 

studied the finite temperature density phase diagram of an attractive fermionic system that 

support two-body (dimer) and three-body (trimer) bound state in free space. Using the 

interaction characteristic for nuclear matter, we have evaluated the pairing gap as a function of 

temperature for the fixed values of the ratio f=n0/n, where ni the baryon density and no is the 

satuaration density of symmetrical nuclear matter. The chemical potential is also evaluated as a 

function of temperature with fixed values of diluteness parameter na3 where a is scattering 

length. We have also evaluated the dependence of two-body and three-body binding energies 

Ed and Ef respectively as a function of inverse temperature for the fixed values of the ratio 

f=n0/n for dilute nuclear matter. Our theoretical results indicate that the binding energies of 

two and three body bound states depend upon the choice of interaction. We have also 

evaluated the critical temperatures for the super fluid phase transition and for extinction of 

three-body bound states as a function of density. Our theoretical obtained results show that 

low temperature and low-density domain [na3 <<1, f<40) contains a Bose condensate of a 

tightly bound deuterons. The low-temperature, high density domain features a BCS condensate 

of weakly bound Cooper pairs (na3>>`1). The domain between these two characteristics 

contains nucleonic liquid. Our theoretically obtained results are in good agreement with the 

other theoretical workers2-4. 

In another work, using the theoretical formalism of Luca Salasnich5, we have investigated the 

Bose-Einstein condensation of fermionic pairs in three different super fluid systems. The system 

includes ultra cold and dilute atomic gases, bulk neutron matter and neutron stars. Here, we 

have determined the condensate fraction of fermionic atoms as a function of the inverse 

interaction strength (1/kFa), kF is Fermi wave number. Our theoretically evaluated results are in 

good agreement with other theoretical workers6,7. 

MATERIALS AND METHODS 

Evaluation of Pairing gap and chemical potential as a function of temperature 

In order to evaluate pairing gap and chemical potential as a function of temperature, one has to 

solve the gap equation. One starts with real time Green’s function formalism in which the 

propagator are assumed to be ordered on the Schwinger-Keldysh real time contour8. The 
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correlation function and self-energies are in the form of 2x2 matrices. The one-body Green’s 

function is defined in terms of the fermionic fields 
(x)

 

  

c

a

G (x,x '), G (x,x ')
G (x,x ')

G (x,x '), G (x,x ')


 

 
 

 
 
 
   

    =

c †

† a †

T † (x) (x ') (x) (x ')

(x) (x ') T (x) (x ')

   

   

    
 
     
      (1) 

Here, Tc/a are the time-ordering and anti-ordering operators. stands for statistical averaging 

over the equilibrium grand-canonical ensemble and x is space-time four vectors. The Greek 

indices stand for discrete quantum numbers (spin ,isospin). In, equilibrium, the physical 

properties of the system is described by the retarded propagator 

     
RG (x,x ')  =

(t t ')[G (x,x ') G (x,x ')] 
   

            (2) 

where 
(t)

 is the step function. The retarded and advanced propagators are also related to 

the elements of the Schwinger-Keldysh matrix (1) through a rotation in the matrix space by the 

unitary operator yU (1 i ) / 2  
, where y is the y-component of the vector of Pauli 

matrices. The 4x4 matrix Green’s function satisfies the familiar Dyson equation 

  

0 4 4
,G (x,x ') G (x,x ') d x"d x"'     

0
,xG (x,x"') (x"', x")G (x",x ')   

                                    (3) 

where free propagators 
0G (x,x ')  are diagonal in the Gor’kov space. Taking the Fourier 

transformation of equation (3) , one gets 

 0 0G (p) G (p) G (p)x[ (p)      G (p) (p)Fd (p)] 
     (4) 
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† †

0F (p) G ( p)x[ (p)G (p)      ( p)  F (p)]
         (5) 

Here, p is the four momentum, 0G (p) is the free normal propagator and 
(p)

 and 

(p)
 are normal and anomalous self-energies. 

G (p)  and 
F (p)  are two-point 

correlation functions. The solutions of equation (4) and (5) are obtained under quasi-particle 

approximation which keeps only the pole part of the propagators are 

 

R 2 1 2 1
p pG u ( i ) v ( i ) 

         
   (6) 

  
RF  

† 1 1
p pF u v [( i ) ( i ) 

         
  (7) 

 

R 2 1 2 1
p pG v ( i ) u ( i ) 

        
   (8) 

Here, the quasi-particle spectrum 
2 2E(p) (p)    

 and the Bogolyubov amplitudes 

up and vp are normalised. 

2
pu 1/ 2 E(p) / 2   

 and 

2 2
p pu v 1 

. In equilibrium the 

elements of the 2x2 matrix appearing in equation (1) are determined from the retarded and 

advanced propagators as  

  
A RG (p) [G (p) G (p)]f ( )   

 

   
RG (p) G (p) G (p)  

     9(a) 

   
RG (p) G (p) G (p)  

 

    
a AG (p) G (p) G (p) 

     9(b) 

where 
f ( )

is the Fermi distribution function. For time-local approximations, both the pairing 

interaction and the pairing gap are energy independent. The mean-field approximation to the 

anomalous self-energy (the gap-function) is then 
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R R

4

d dp'
(p) 2 V(p ,p ') ImF ( ,p ')

(2 )

  
  




f ( )
    (10) 

Substituting equation (7), one can obtain two-coupled integral equations for the gap (l=0, 2) 

 

2
3SD1

l l ll '2

dp 'p '
(p) V (p,p ')

(2 )
   




l '

2 2

(p ')

E(p) D(p ')





x[f ( ) f ( ),(l, l ' 0,2)                                                       (11) 

where   

2 2 2
0 2

3
D (k) ( )[ (k) (k)]

8
  

  is the angle-averaged neutron-proton gap 

function and 
3SD1V (p,p ')

 is the interaction in the 3S1 3D1 channel (the dominant 

attractive channel in dilute and isospin-symmetric nuclear matter). The chemical potential is 

then determined self-consistently from the gap equation (11) and the expression for the 

density is given by 

  

R

4

dp d
n 8 ImG ( ,p )f ( )

(2 )







   




 

   

3
2 2
p p3

d p
4 [u f ( ) v f ( )]

(2 )
    




         (12) 

The factor 4 comes from the sum over the two projections of spin and isospin. 

Two-body bound states: 

Now, one considers temperature above the critical temperature of pair production. The two-

body T matrix that sums up the particle –particle ladders for a system interacting with the 

potential V obeys the operator equation 

  T=V+VG0T  =V+TG0V          (13) 

Since the potential is time local, the T-matrix depends on two-time arguments and its 

transformation properties are identical to those of the two-point correlation function. The four 
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momenta p=(E, P) and 
p ( ,p ) 

in the center –of-mass system are related to their 

counterparts 1,2 1,2 1,2k ( ,k ) 
 in the laboratory system through 1 2P k k   and 

1 2p (k k ) / 2  .  

In the momentum representation, equation (13) takes the form 

 TR (p ,p ',P ,E)   3

dp"
V(p ,p ')

(2 )


  


 " R "

0V(p ,p )xG (p ,P ,E)   

R "T (p ,p ;P ,E)  

              (14) 

for the retarded component of the T-matrix. The relevant two-body Green’s function is given by 

 
R

0 1 2G (k ,k ,E) 

1 2

1 2 1 2

1 2

G (k )G (k ) G (k )G (k )

E i

   

 




   
 

    

2 1 2

1 2

Q (k ,k )

E (k ) (k ) i

 

 


     
       (15) 

In the second relation, one has used the quasi-particle approximation. One has   
f

d

2





, 

The two-body phase space occupation factor 2 1 2 1 2Q (k ,k ) 1 f (k ) f (k )     
 is 

operating in intermediate states and allowing the propagation of particle and holes, thereby 

incorporating time-reversal invariance. The two-body TR-matrix has a pole at the energy 

corresponding to the two-body bound state. If Q2 =1, the pole is exactly at the binding energy 

of the deuteron; otherwise the pole on the real energy axis determines the binding energy of a 

dimmer in the background medium of finite density and temperature. 

Three-body bound states 

In this case the three-body equation is given by 

   T=V+VGV = V+ G0T                (16) 
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Here T is three –body matrix and V is three-body interaction and G and G0  are full and free 

three-body Green’s function. The three-body propagator G0 is written in the momentum 

representation  

 G0(k1, k2, k3 ,Ω)=   1 2 3

1

, ,

[G (k )

  


        2 3 1 2 3G (k )G (k ) G (k )G (k )G (k )]    

 

    

3 1 2 3

1 2 3

Q (k ,k ,k )

(k ) (k ) (k ) i

    

    (17) 

Here,  i i ik ( ,k ) 
 is the particle four-momenta and 3 1 2 3Q (k ,k ,k )

 is the intermediate 

–state phase-space occupation factor for three particle propagation and is given by  

  3 1 2 3 1 2 3Q (k ,k ,k ) [1 f (k )][1 f (k )[1 f (k )     1 2 3f (k )f k f (k )
                             

(18) 

These equations are solved in the form of integral equations in the states diagonal in the 

angular momentum basis 

  si i
pq pq(l )LM(s1/ 2)SM  

      (19) 

Where p and q are the magnitudes of the relative momenta of the pair (kj), l and  are their 

associated relative angular –momentum quantum numbers, s is total spin and LMSMS are the 

orbital and spin quantum numbers of the three-body system. The two-body T-matrix is given by  

 

2

2

dp"p '
p T( ) p ' p V p ' p ' V p"

4
  




2Q (p,q)
X p" T( ) p '

(p,q) (p,q) i 


    

              (20) 

Where  2Q (q,p) 1 f (q / 2 p) f (q / 2 p)    
 and 

(q,p) (q / 2 p)   
 are 

averaged over the angle between the vectors q and p. The three-body propagator in the 

i
pq

 has the form 
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0 ' 2 2

(p p ') (q q ')
pq G p'q ' '

p q


   
    

3Q (q,p)
x

(q,p) (q,p) ( q)    
         (21) 

Where Q3 (q,p) is  given by equation (18). Here, the propagator is assumed to be independent 

of the momentum of the three-body system with respect to the background (K =0). Finally , the 

required expression for the permutation operator P in the chosen basis 

 

1

1 2
l 2 l ' 2

1

( p) ( p ')
pq P p 'q ' ' dx

p (p ')



 


     
   

'xH (q,q ', x)     (22) 

Here, 
2 2 2
1 q ' q / 4 qq 'x   

,  
2 2 2
2 q q ' / 4 qq 'x   

 and x is the angle formed by 

q and q’ 'H (q,q 'x)  is given by  

1 2 1 2' n l l l l ' l ' l '

n 0

H (q,q 'x) P (x)


    



  
2 2 2 2 1 1 2 2l l ' l l ' nl l ' l l '

'q (q ') h
 

   (23) 

Here, Pn (x) is Legendre polynomial and 
1 1 2 2nl l ' l l '

'h   is coefficients of combination of 3j and 6j 

symbols9. The resulting equation is solved with the method of iteration10. 

Evaluation of condensate fraction n0/n of neutron pairs in neuclear matter and neutron star 

In order to evaluate condensate fraction n0/n of neutron matter and neutron star, one takes 

help of the formalism of Luca Salasnich5, which studies the fermionic condensation in ultra cold 

atoms, nuclear matter and neutron stars. 

A quantum system of interacting identical bosons can be described by the bosonic field 

operator which satisfies the familiar commutation relation11 

  
†[ (r ), (r ' )] (r r ')       

   24(a) 

  
† †[ (r ), (r ')] [ (r ), (r ')] 0        

   24(b) 
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The bosonic one-body density matrix is given by 

   

†n(r , r ') (r ) (r ')     
   24(c) 

Here 
(r )

 is the Dirac-delta function.  is a thermal average. The total number of bosons 

is given by 

   

† 3N (r ) (r ) d r        24(e) 

The condensate number N0 of bosons are given by  

   

2
3

0N (r ) d r  
   24(f) 

Similarly for quantum system of interacting identical fermions with two spin components 

( , )     can be described by the fermionic field operator 
(r )

  which satisfies the 

familiar anti-commutation rules 

  
†

' '{ (r ), (r ')} (r r ')   
       

     25(a) 

  
† †

' '{ (r ), (r ')} { (r ), (r ')}   
       

  =0   25(b) 

Here, '
 is Kronecher delta. The fermionic one-body density matrix is given by  

   

' †
, ' 'n (r , r ) (r ) (r )   

     
     25(c) 

The total number of fermions read as 

   

† 3

,
N (r ) (r ) d r  

   
   

   25(d) 

Number of condensed fermions N0 is given by 
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2
' 3

0 ', ' ,
N 2 (r ) (r ) d r  

    
    3 'd r      25(e) 

The shifted Hamiltonian of the uniform two-spin component Fermi super fluid made of ultra 

cold atoms is given by  

 

2
3 † 2H d r (r )[ ]

2m

 


      (r )


† †g (r ) (r ) (r ) (r )   

   
    

                               (26) 

Where 
(r )

  is the field operator that annihilates a fermion of spin   in the position r, 

while 
† (r )


 creates a fermion of spin   in r. Here g<0 is the strength of the attractive 

fermion-fermion interaction which is approximated by a contact Fermi pseudo-potental12. 

Because of ultra cold and dilute gases the average distance between atoms is much larger than 

the effective radius of the inter-atomic potential. The total number N is fixed by the chemical 

potential which appears in equation (26) 

Within the Bogoliubov approach the mean field Hamiltonian shown in equation (26) can be 

diagonalized by using the Bogoliubov-Valatin representation13 to the field operator 
(r )

 in 

terms of the anti-commuting quasi-particle Bogoliubov operator k
b  with amplitudes k

u 

, 

k
v 

 and the quasi-particle energy k
E 

. The expressions of these parameters are given by 

  

1

2 2 2
k k

E [( ) ]    
     27(a) 

  
2

k k k
u (1 ( ) / E ) / 2     

     27(b) 

  
2

k k k
v (1 ( ) / E ) / 2     

     27(c) 

   

2 2

k

k

2m
 

     27(d) 
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k

k

1 1 1

g 2E





 


   27(e) 

    

2

k k

2
n v  

   27(f) 

Here, k
is the single-particle energy,  is the pairing gap and   is the volume of the 

uniform system. N is the total density of the fermions. The condensate density of paired 

fermions is given by  

   

2 2
0 k k k

2
n u v   

      28(a) 

With the help of parameters k ku ,v ,
 and   the above equation assumes the form 

  

3
3 22
2

0 3 2

m
n 1

8

 
   

                28(b) 

Nuclear Matter 

For the study of nuclear matter, one takes help of the following Hamiltonian14 

 

2 2
3 †

,
H d r (r )[ ]

2m

 
 


     (r )



3 3 ' † † ' 'd r d r (r ) (r )V(r r )     

 
    '(r ) (r ) 

 
 

       28(b) 

Where 
(r )

  is the field operator that annihilates a neutron of spin   in the position r, 

while 
† (r )


 creates a neutron of spin   in r. Here. 
'V(r r ) 

 is the neutron-

neutron potential characterized by s-wave scattering length a=-18.5 fm and effective 

range15=2.7fm. Now, applying the familiar Bogoliubov approach, equation 28(b) can be written 

in the integral form 
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k
q k q k

k

V
2E



   




  

       28(c) 

Where   
, ,q k

V q k V k k 

     
   28(d) 

This is the wave-number representation of the neutron-neutron potential.  k
E 

is given by 

   

2 2
22

k k

k
E ( )

2m
    

    28(e) 

Under the simplifying assumption, 

22
2 3

F (3 n)
2m

   
 and k 

, one determines 

the condensate fraction16 

   

2
F F

2
0

5
F

6 2

1
n

n
I ( )2

 
 

  




            28(f) 

Where  

2
2F

2 2
2 2

0

(y x)
I ( ) I (x) y (1 )dy

(y x) 1


 

  
  


    28(g) 

In the deep BCS regime, where F

1



, one finds 

   

0

F

n 3

n 8

 



      28(h) 



Research Article          CODEN: IJPAKY             Impact Factor: 4.226          ISSN: 2319-507X                                                                                                  
Ashok Kumar Singh, IJPRET, 2017; Volume 6 (5): 1-25                                                   IJPRET 
 

 
 

Available Online at www.ijpret.com 
 
 

13 

Now, using the numerical data of F




as a function of F  obtained 17 from realistic neutron-

neutron potentials, one gets 

   

1

2

0 F

F F 3 3

k

exp(k / )








  
    28(I) 

Now, using the parameters 0 1 22.851, 1.942, 1.657     
 and 3 0.274 

 with the 

help of equation 28(f), one can get the condensate fraction of neutron matter as a function of 

neutron density. 

Neutron stars 

Neutron stars are astronomical compact objects which can result from the gravitational 

collapse of massive star during supernova event. Such stars are mainly composed of neutrons. 

Neutron stars are very hot and are supported against further collapse by Fermi pressure. A 

typical neutron star has a mass M between 1.35 and 2.0 solar masses with a corresponding 

radius R of about 12 km. The crust of neutron star s is super fluid with temperature T=108K. In 

this paper, we have studied the condensate fraction n0/n of the neutron star as a function of 

distance r. The results are shown in table T7 and T8 respectively 

RESULTS AND DISCUSSION 

Using the theoretical formalism of A Sedrakian and John W Clark1, we have studied pair 

condensation and bound states in fermionic systems. This formalism studies the finite 

temperature density phase diagram of an attractive fermionic system that supports two-body 

(dimmer) and three-body (trimmers) bound states in free space. Pairing correlation and three-

body bound states are universal properties of attractive fermions that are considerable interest 

in number of fields.  Trapping and manipulating of cold fermionic atoms has opened a new 

window on the many-body properties of dilute Fermi system18. The possibility of manipulating 

the strength of the interactions in these systems by tuning a Feshbach resonances allow one to 

explore the phase diagram in different regions particularly crossover in a controlled manner. In 

table T1, we have shown the evaluated result of pairing gap  [MeV] as a function of 

temperature T[MeV] for fixed values of ratio f=(n0/n). Here n is the baryon density and n0 

=0.16fm-3 the saturation density of symmetrical nuclear matter. We have evaluated the result 
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for f=20, 40, 60, 80 and 150. Our obtained results indicate that   decrease with T for all the 

values of f. The result is maximum for f=20 and minimum for f=150. In table T2, we have 

presented an evaluated result of chemical potential  [MeV] as a function of T[MeV] for 

different values of na3. na3 is diluteness parameter with scattering length a =5.4 fm. Our 

obtained results show that   increase very slowly as a function of T for each value of na3. The 

value is large for na3 =1.25 and small for na3 =0.15. In table T3, we have shown the evaluated 

results of two-body binding energy (Ed) and three-body binding energy (Et) as a function of 

inverse temperature 
1[MeV]

 for fixed value of the ratio f=(n0/n). This results show the 

temperature dependence of the two-body and three-body bound states energies in dilute 

nuclear matter for several values of density of environment. Our theoretically obtained results 

also show that the ratio t dE ( ) / E ( ) 
 is a universal constant independent of temperature. 

In table T4, we have presented the evaluated results of critical temperature T [MeV] of three-

body bound states as a function of density na3. Our theoretically obtained results show that at 

low density, high-temperature domain is populated by trimmers. The low temperature and low 

density domain (na3<<1, f<40) contain BEC of tightly bound deuterons. The low-temperature 

high density domain features a BCS condensate of weakly-bound Cooper pairs (na3>>1). The 

low density and low-temperature domain is populated by dimmers. The total results illustrate 

the scenario that the phase diagram of low-density finite temperature nuclear matter is two-

fold. The system supports liquid-gas and super fluid phase transition. In table T5, we have 

shown the evaluated results of condensate fraction (n0/n) of fermionic atoms as a function of 

inverse interaction strength F

1

k a
. The results are performed using theoretical formalism of 

Luca Salasnich5. Mean-field results were compared with fixed mode diffusion Monte Carlo 

simulation results19,20. Our results indicate that the two theoretical approaches in the BEC side 

of the crossover. In table T6, we have presented an evaluated results of condensate fraction 

(n0/n) of neutron pairs in neutron matter as a function of scaled neutron number density (n/nS) 

where nS is the nuclear saturation density. Two results were obtained by solving equation 28(f) 

28(I)(Result I) and solving equation 28(h) and 28 (I) (Result II) respectively. Our theoretically 

obtained results indicate that at very low neutron density n, the neutron matter behaves like 

quasi-ideal Fermi gas with weakly correlated Cooper pairs and the condensate fraction (n0/n) is 

very small. By increasing the neutron density, the attractive tail of neutron-neutron potential 

becomes relevant and the condensate fraction (n0/n) grows significantly. (n0/n) becomes 

maximum at (n/nS)=10. On further increasing the density n, the repulsive core of the neutron-
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neutron potential plays an important role and it destroys the correlation of Cooper pairs and 

condensate fraction (n0/n) starts decreasing. Results I and II are very much identical. In table 

T7, we have shown the evaluated results of scaled density profile (n/nS) as a function of (r/R) 

for 1.4 solar mass neutron star. Here nS is nuclear saturation density and =0.16fm-3. R is the 

radius of the star. Results were compared with PAL model21 and Walacka model22 of bulk 

neutron matter. Both results are very much identical. In table T8, we have presented the 

evaluated results of condensate fraction (n0/n) of neutron pairs as a function of scaled distance 

(r/R). Obtained results were compared with two formalism results Result I and Result II. These 

results were obtained by solving equation 28 (f) and 28 (I)  and equation 28(h) and 28 (I) 

respectively. These results indicate that how condensate fraction appears in the crust of the 

neutron star23. There is some recent calculations24-28 which also reveals the similar behaviour. 

CONCLUSION 

From the above theoretical investigations and analysis, we have come across the following 

conclusions:   

(1) We have studied pair condensation and bound states in fermionic systems using 

temperature-density phase diagram of dilute isospin –symmetric nuclear matter which features 

an isospin singlet and spin triplet pair condensate at low temperature and a gas of trimmers 

(three-body bound systems) at high temperatures. 

(2) We have evaluated gap function and chemical potential by solving the gap equation. We 

observed that the behaviour of the system can be quantified in the density-temperature 

domain where the Cooper pair condensate crosses over to BEC condensate of tightly bound 

deuterons. 

(3) We also observed that the ratio of the temperature dependent binding energies of dimmers 

and trimmers are independent of the temperature and density and can be determined from its 

value in free space. At high temperature/low density, the system is populated by trimmers 

whereas in low temperature/high density, the system supports a condensate of neutron-proton 

Cooper pairs. This then crossovers to BEC condensate of deuterons as the density decreases.. 

(4) We have also studied fermionic condensate in nuclear matter and neutron star. We 

observed that the condensate fraction in ultra cold gases of fermionic atoms can be measured 

with the help of momentum distribution of pairs. The condensation of fermionic pairs are 

analysed as a function of s-wave scattering length using the technique of Feshbach resonances. 

One observes small and negative value for BCS regime of Cooper Fermi pairs to small and 
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positive value for BEC of molecular dimmers. It crosses the unitarity limit where the scattering 

length diverges.  

(5) Our theoretically obtained results show that maximum condensate fraction exists in the 

crust of neutron star. 

Table T1: An evaluated result of pairing gap  (MeV) as a function of temperature T(MeV) for 

fixed value of ratio f=n0/n, where n is the baryon density and n0 =0.16fm-1 is the saturation 

density of symmetrical nuclear matter. 

T [MeV]                             <--------  [MeV]---------------------- 

f=20 f=40 f = 60 f =80 f= 150 

0.00 5.625 4.757 3.886 3.247 2.876 

0.25 5.607 4.586 3.255 3.025 2.607 

0.50 4.528 3.978 3.059 2.976 2.515 

0.75 4.482 3.295 2.927 2.734 2.302 

1.00 4.326 3.106 2.656 2.575 1.889 

1.25 3.887 2.889 2.475 2.367 1.753 

1.50 3.248 2.627 2.307 2.185 1.619 

1.75 2.976 2.435 2.795 2.057 1.505 

2.00 2.808 2.056 2.626 1.826 1.324 

2.25 2.507 1.793 2.405 1.678 1.108 

2.50 2.319 1.586 2.157 1.455 1.059 

3.00 1.756 1.429 1.842 1.276 0.958 

3.50 1.358 1.305 1.610 1.108 0.732 

4.00 1.275 1.216 1.326 1.056 0.638 
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Table T2: An evaluated result of chemical potential  [MeV] as a function of temperature T 

[MeV] for fixed value of diluteness parameter 
3na , taking scattering length a=5.4fm. 

T[MeV]                           <---------  [MeV]---------------- 

3na =1.25 
3na =0.65 

3na =0.30 
3na =0.20 

3na =0.15 

0.00 2.953 1.542 0.325 -0.246 -0.486 

0.25 2.976 1.567 0.346 -0.225 -0.472 

0.50 2.998 1.594 0.355 -0.214 -0.465 

0.75 3.102 1.622 0.367 -0.208 -0.457 

1.00 3.147 1.645 0.376 -0.196 -0.448 

1.25 3.198 1.657 0.382 -0.185 -0.432 

1.50 3.226 1.678 0.385 -0.176 -0.425 

1.75 3.245 1.694 0.386 -0.168 -0.416 

2.00 3.276 1.712 0.390 -0.156 0.402 

2.25 3.324 1.735 0.391 -0.147 -0.398 

2.50 3.345 1.755 0.392 -0.132 -0.380 

3.00 3.357 1.767 0.394 -0.125 -0.377 

3.50 3.368 1.784 0.395 -0.116 -0.368 

4.00 3.392 1.796 0.397 -0.108 -0.339 
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Table T3: An evaluate result of two-body binding energy (Ed) and three-body binding energy 

(Et)  as a function of inverse temperature 
1[MeV]

 for the fixed value of ratio f=n0/n, n is 

the baryon density and n0 =0.16 fm-3, n0 is the saturation density. 

1[MeV]
 

               Ed [MeV]                Et [MeV] 

f  =40 f  =80 f  =40 f  =80 

0.00 -7.468 -7.296 -1.867 -2.768 

0.05 -6.276 -7.105 -1.649 -1.847 

0.10 -5.878 -6.748 -1.534 -1.656 

0.15 -4.542 -5.246 -1.453 -1.532 

0.20 -4.108 -4.849 -1.229 -1.386 

0.25 -3.946 -4.106 -1.116 -1.224 

0.30 -3.649 -3.864 -1.058 -1.028 

0.35 -3.267 -3.662 -0.986 -0.849 

0.40 -2.876 -2.975 -0.742 -0.697 

0.45 -2.642 -2.843 -0.523 -0.432 

0.50 -2.248 -2.654 -0.369 -0.358 

0.55 -2.105 -2.408 -0.225 -0.267 

0.60 -1.986 -2.109 -0.108 -0.185 
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Table T4: An evaluated result of critical temperature T[MeV] of three-body bound state as a 

function of density na3 for dimmers, trimmers, BEC and BCS phases 

na3                         <-------- T [MeV]--------------- 

dimmers Trimmers BEC BCS 

0.00 0.000 ----- 0.000 ----- 

0.10 0.582 ----- 0.205 ----- 

0.20 0.975 ----- 0.308 ----- 

0.30 1.267 ----- 0.492 ----- 

0.40 2.346 ----- 0.786 ----- 

0.50 4.587 ----- 1.126 ----- 

0.60 6.235 ----- 1.167 ----- 

0.70 ---- 7.586 1.198 ----- 

0.80 ---- 8.243 1.247 ----- 

0.90 ---- 9.107 ----- 1.297 

1.00 ---- 9.945 ----- 1.328 

1.10 ----- 10.248 ----- 1.532 

1.20 ----- 11.324 ----- 1.587 

1.30 ----- 11.876 ----- 1.675 

1.40 ----- 12.232 ----- 1.886 

1.50 ----- 12.467 ----- 1.943 
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Table T5: An evaluated result of condensate fraction n0/n of fermionic atoms as a function of 

the inverse interaction strength 1/kFa, Mean-field results were compared with fixed mode 

diffusion Monte Carlo results, kF is Fermi wave number, n is the total number of atoms and a 

is the s-wave scattering length of the inter-atomic potential 

1/kFa                      <------ n0/n------------------- 

Mean-field result Monte Carlo result 

-3.00 0.027 ----- 

-2.50 0.038 ----- 

-2.00 0.075 ----- 

-1.50 0.102 ----- 

-1.00 0.209 0.076 

-0.50 0.353 0.225 

0.00 0.578 0.376 

0.50 0.623 0.583 

1.00 0.759 0.647 

1.50 0.872 0.759 

2.00 1.027 0.875 

2.50 1.132 0.923 

3.00 1.253 1.103 
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Table T6: An evaluated results of condensate fraction n0/n of neutron pairs in neutron matter 

as a function of the scaled neutron density n/nS, nS is nuclear saturation density and nS 

=0.16fm-3. The results were obtained by solving equation 28(f) and 28 (I) (Result I) and 28(h) 

and 28 (I) (Result II)  respectively. 

  n/nS                       < --------  n0/n----------------- 

    I Result   II result 

 10-12 0.000 0.000 

 10-11 0.000 0.000 

10-10 0.000 0.000 

10-9 0.052 0.047 

10-8 0.078 0.069 

10-7 0.092 0.084 

10-6 0.107 0.099 

10-5 0.125 0.116 

10-4 0.167 0.234 

10-3 0.224 0.356 

10-2 0.323 0.389 

10-1 0.456 0.463 

10 0.487 0.525 

101 0.408 0.489 

102 0.347 0.392 

103 0.232 0.287 
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Table T7: An evaluated result for scaled density (n/nS) as a function of (r/R), Here nS is nuclear 

saturation density =0.16fm-3 and R is the radius of star. The result is performed for 1.4 solar 

mass neutron star 

r/R                   <------  n/nS------------- 

Result obtained by PAL model Result obtained by Walaca 

model 

0.50 10.276 10.357 

0.l70 9.842 9.958 

0.75 9.327 8.732 

0.80 8.539 7.968 

0.85 7.876 7.542 

0.90 6.557 6.358 

0.95 0.0943 0.0894 

1.00 0.0538 0.0476 

1.05 0.0476 0.0239 

1.10 0.0017 0.0025 

1.15 0.0038 0.0017 

1.20 0.0059 0.0011 

1.25 0.0087 0.0002 

1.30 0.009 0.0005 

1.40 0.0005 0.0006 

1.50 0.0003 0.0007 
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Table T8: An evaluated result of condensate fraction (n0/n) of neutron pairs as a function of 

scaled distance r/R for 1.4 solar mass neutron star. Result I is obtained by solving equation 28 

(f) and 28 (I) and (result II) is obtained by solving 28 (h) and 28 (I) respectively 

 r/R               < ------- (n0/n)------------------ 

 Result I  Result II 

0.65 0.000 0.000 

0.70 0.000 0.000 

0.75 0.000 0.000 

0.80 0.000 0.000 

0.85 0.054 0.067 

0.90 0.087 0.095 

0.95 0.259 0.387 

1.00 0.478 0.505 

1.05 0.322 0.452 

1.10 0.279 0.316 

1.15 0.184 0.255 

1.20 0.123 0.158 

1.25 0.097 0.117 

1.30 0.084 0.095 

1.40 0.062 0.072 

1.50 0.007 0.009 
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